تحلیل ارتعاش آزاد تیر مدرج محوری اویلر برنولی یکسرگیردار با میرایی غیرویسکوز غیرمحلی به روش گالرکین
پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8) XML اصل مقاله (820.48 K)
نویسندگان
1دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2دانکده عمران، دانشگاه صنعتی نوشیروانی بابل
چکیده
به‌کارگیری میرایی غیرمحلی در هنگام مدل‌سازی نیروهای پیرامونی در مجموعه‌ای از میراگرهای شبکه‌ای متصل به هم، بسیار کارآمد است و حتی در سیستم‌های بزرگ‌مقیاس موجب بهینه‌سازی ظرفیت میرایی می‌شود. محققان بسیاری برای جلوگیری از پیچیدگی‌های محاسباتی، مدل میرایی ویسکوز را در تحلیل دینامیکی سازه‌ها ملاک قرار داده‌اند، حال آن‌که مدل‌های متاثر از پارامترهای بیشتر، تطابق بهتری با نتایج آزمایشگاهی و پاسخ سازه‌های واقعی دارند. در مقاله حاضر، میرایی خارجی تیر اویلر برنولی مدرج محوری یکسرگیردار با فرض وابستگی نیروهای استهلاکی به تاریخچه زمانی حرکت و تاثیرپذیری از اندرکنش‌های نقاط پیرامونی، به‌شکل انتگرال‌های همگشت مورد بررسی قرار می‌گیرد. در این راستا، با اتکا به روش گالرکین و اعمال تبدیل لاپلاس، معادله دیفرانسیل انتگرالی حاکم بر محیط پیوسته، تبدیل به یک سیستم گسسته معادل با تعداد درجات آزادی محدود می‌شود. در ادامه، شکل مود تیر همگن نامیرای متناظر به عنوان تابع قیاسی، که شرایط مرزی نیرویی و هندسی را به‌خوبی اقناع می‌کند، در بسط راه‌حل آزمایشی معادله حرکت در نظر گرفته می‌شود. پس از تعیین ماتریس‌های سختی، جرم و میرایی سیستم نسبت به مختصات تعمیم‌یافته، مقدارهای ویژه مختلط و حقیقی با استفاده از دترمینان ماتریس سختی دینامیکی به‌دست می‌آیند که به‌ترتیب مودهای الاستیک و غیرویسکوز را نشان می‌دهند. فرض می‌شودکه خصوصیات مکانیکی و فیزیکی تیر مورد نظر در راستای محور طولی به‌صورت پیوسته و تدریجی بر اساس قانون توانی تغییر می‌کند؛ که طی سال‌های اخیر به‌دلیل برتری نسبت به مواد همگن و یا مواد مرکب لایه‌ای، به‌شکل گسترده‌ای در صنایع خودروسازی و هوا و فضا مورد استفاده قرار گرفته‌است. نتایج عددی این مقاله با پاسخ‌های سایر مراجع در حالت خاص مقایسه شده‌است که انطباق بسیار خوبی نشان می‌دهد.
کلیدواژه ها
 
Title
Free vibration of viscoelastic nonlocally damped cantilever Euler Bernoulli beam made of axially functionally graded materials using Galerkin method
Authors
Parisa Elyasi, Bahram Navayi Neya, Ali Rahmani Firoozjaee
Abstract
Employing the nonlocal theory can be helpful to model contact shear forces besides long-range interactions in the set of interconnected dampers. Nonlocal damping is also beneficial to optimize the damping capacity in large-scale structures. Numerous researchers have considered viscous damping to simplify studying the dissipation behavior of the systems. However, non-viscous damping models depend on more parameters and show better agreement with experimental results and the responses of the real structures. In the recent study, the external damping at any point of AFG Euler Bernoulli beam with one end fixed is influenced by the past history of the velocity and long-range forces. Employing the Galerkin method and after applying Laplace transformation, the integro-partial differential equation of the beam turns into an ordinary differential equation. Now, the distributed system is equivalent to a discrete system with finite degrees of freedom. Undamped mode shapes of the homogenous beam are selected as suitable admissible functions to expand the corresponding trial solution. These admissible functions satisfy essential boundary conditions as a concern. Subsequently, mass, stiffness, and damping matrices are determined with respect to the generalized coordinates by minimizing the weighted residual. Afterward, the determinant of the dynamic stiffness matrix is set equal to zero. Consequently, the elastic and non-viscous eigenvalues are obtained. The physical and mechanical characteristics of the material are assumed to vary continuously in a gradual manner along the longitudinal axis of the beam according to the power-law gradient assumption. Recently, AFG materials are used widely in the aerospace and automotive industry due to the promising mechanical and thermal advantages over traditional homogenous materials and layered composite systems. The numerical results of the recent study are compared to the special cases to confirm the needed accuracy of the method.
Keywords
Axially functionally graded beams, viscoelastic nonlocally damping, Galerkin Method, Eigen values