لنزهای صوتی قابل تنظیم مبتنی بر بلورهای فونونی

پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8)
کد مقاله : 1024-ISAV2022 (R1)
نویسندگان
1دانشکده مهندسی برق-دانشگاه صنعتی سهند-تبریز-ایران
2دانکشده مهندسی برق-دانشگاه صنعتی سهند-تبریز-ایران
چکیده
یک بلور فونونی دو بعدی با ضرایب شکست تدریجی (GRIN PnC) از استوانه‌های فولادی در یک ماتریس اتانول برای طول موج‌های بزرگتر مساوی با 6 برابر ثابت شبکه در دمای اتاق طراحی و شبیه‌سازی شد. نمایه سکانت هذلولی ضریب شکست با تغییر شعاع پراکنده سازها در جهت عرضی به دست می‌آید تا به تدریج باعث شکست امواج شود. روش اجزای محدود برای محاسبه ضریب شکست مؤثر در هر ردیف ساختار و بررسی انتشار امواج صوتی در محیط تدریجی استفاده می‌شود. با کمک روابط محیط‌های تدریجی، مسیر پرتو تحلیلی به دست آمد و با نتایج انتشار موج مقایسه شد. اثر دما بر باند اول و تنظیم حرارتی نقطه کانونی برای دمای 0 درجه سانتی گراد و 50 درجه سانتی گراد بررسی شده است. نتایج به دست آمده نشان می ‌دهند که می‌توان نقطه کانونی را در یک فرکانس مشخص به دلیل تغییرات ضرایب شکست مؤثر استوانه‌ها در موقعیت-های عرضی برای کاربرد کالیبراسیون جابه جا کرد.
کلیدواژه ها
موضوعات
 
Title
Tunable Acoustic Lenses based on Phononic Crystals
Authors
Fatemeh Ahmadzadeh, Ali Bahrami
Abstract
A two-dimensional gradient-index phononic crystal (GRIN PnC) of steel cylinders in an ethanol matrix was designed and simulated for λ≥6a at room temperature. The hyperbolic secant profile of the refractive index is obtained by changing the scatterers radius of the structure in the transverse direction to gradually refract the waves. The finite element method is used to calculate the effective refractive index in each row of the structure and to investigate the propagation of acoustic waves in the gradual medium. With the help of gradient structure equations, the analytical beam trajectories were obtained and compared with the wave propagation results. The effect of temperature on the first band and thermal adjustment of the focal point for 0°C and 50°C have been investigated. The obtained results show that it is possible to shift the focal point at a certain frequency due to the changes of the effective refractive indices of the cylinders in the transverse positions for the calibration applications.
Keywords
Phononic crystal lens, Hyperbolic secant profile, Thermal tuning, Focal point shift
مراجع
<p dir="ltr">1. M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, &ldquo;Acoustic band structure of periodic elastic composites&rdquo;, Physical Review Letters 71, 2022 (1993).</p> <p dir="ltr">2. M. Sigalas, EN. Economou, &ldquo;Band structure of elastic waves in two dimensional systems&rdquo;, Solid State Commun 86, 141 (1993)</p> <p dir="ltr">3. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, &ldquo;Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials&rdquo;, Physical Review B 68, 024302 (2003).</p> <p dir="ltr">4. Y. Tang, Y. Zhu, B. Liang, J. Yang, J. Yang, J. Cheng, &ldquo;One-way Acoustic Beam Splitter&rdquo;, Scientific reports 8, 1-6 (2018).</p> <p dir="ltr">5. A. Bahrami, M. Alinejad-Naini, F. Motaei, &ldquo;A proposal for 1&times;4 phononic switch / demultiplexer using composite lattices&rdquo;, Solid State Communications 326 (2021).</p> <p dir="ltr">6. B. Rostami-Dogolsara, M. Moravvej-Farshi, F. Nazari, &ldquo;Designing switchable phononic crystal-based acoustic demultiplexer&rdquo;, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 63, 1468-1473 (2016).</p> <p dir="ltr">7. H. Gharibi, A. Khaligh, A. Bahrami, H.B Ghavifekr, &ldquo;A very high sensitive interferometric phononic crystal liquid sensor&rdquo;, Journal of Molecular Liquids 296, 111878 (2019).</p> <p dir="ltr">8. Y. Pennec, J. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, P.A. Deymier. &ldquo;Two-dimensional phononic crystals: Examples and applications&rdquo;, Surface Science Reports 65, 229-291 (2010).</p> <p dir="ltr">9. S. A. Cummer, D. Schurig, &ldquo;One path to acoustic cloaking&rdquo;, New Journal of Physics 9, p. 45 (2007).</p> <p dir="ltr">10. D. Torrent, J. Ssnchez-Dehesa, &ldquo;Acoustic cloaking in two dimensions: a feasible approach&rdquo;, New Journal of Physics 10, 063015 (2008).</p> <p dir="ltr">11. F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, &ldquo;Refractive Acoustic Devices for Airborne Sound&rdquo;, Physical review letters 88, 023902 (2001).</p> <p dir="ltr">12. A. Hakansson, F. Cervera, J. Sanchez-Dehesa, &ldquo;Sound focusing by flat acoustic lenses without negative refraction&rdquo;, Applied Physics Letters 86, 054102 (2005).</p> <p dir="ltr">13. A. Climente, D. Torrent, J, Sanchez-Dehesa, &ldquo;Sound focusing by gradient index sonic lenses&rdquo;, Applied Physics Letters 97, 104103 (2010).</p> <p dir="ltr">14. T. P. Martin, M. Nicholas, G. J. Orris, L.W. Cai, D. Torrent, J. Sanchez-Dehesa, &ldquo;Sonic gradient index lens for aqueous applications&rdquo;, Applied Physics Letters 97, 113503 (2010).</p> <p dir="ltr">15. A. Sukhovich, L. Jing, J. H. Page, &ldquo;Negative refraction and focusing of ultrasound in two-dimensional phononic crystals&rdquo;, Physical Review B 77, 014301 (2008).</p> <p dir="ltr">16. K. Deng, Y. Ding, Zh. He, Zh. Liu, H. Zhao, J. Shi, &ldquo;Graded negative index lens with designable focal length by phononic crystal&rdquo;, Applied Physics 42, 185505 (2009).</p> <p dir="ltr">17. R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, J. M. Cooper, &ldquo;Phononic crystal structures for acoustically driven microfluidic manipulations&rdquo;, Lab on a Chip 11, 323-328 (2011).</p> <p dir="ltr">18. J. C. Hsu, Y. D. Lin, &ldquo;Microparticle concentration and separation inside a droplet using phononic crystal scattered standing surface acoustic waves&rdquo;, Sensors and Actuators A: Physical 300, 111651 (2019).</p> <p dir="ltr">19. F. Li, F. Cai, L. Zhang, Z. Liu, F. Li, L. Meng, J. Wu, J. Li, X. Zhang, H. Zheng, &ldquo;Phononic crystal enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel&rdquo;, Physical Review Applied 13, 044077 (2020).</p> <p dir="ltr">20. S. Y. Huo, J. J. Chen, H. B. Huang, Y. J. Wei, Z. H. Tan, L. Y. Feng, X. P. Xie, &ldquo;Experimental demonstration of valley-protected backscattering suppression and interlayer topological transport for elastic wave in threedimensional phononic crystals&rdquo;, Mechanical Systems and Signal Processing 154, 107543 (2021).</p> <p dir="ltr">21. S. Y. Huo, J. J. Chen, H. B. Huang, G. L. Huang, &ldquo;Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins&rdquo;, Scientific reports 7, 1-8 (2017).</p> <p dir="ltr">22. S. Y. Huo, J. J. Chen, L. Y. Feng, H. B. Huang, &ldquo;Pseudospins and topological edge states for fundamental antisymmetric Lamb modes in snowflakelike phononic crystal slabs&rdquo;, The Journal of the Acoustical Society of America 146, 729-735 (2019).</p> <p dir="ltr">23. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, P. Sheng, &ldquo;Focusing of sound in a 3D phononic crystal&rdquo;, Physical Review Letters 93, 024301 (2004).</p> <p dir="ltr">24. L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y.F. Chen, J. Zi, Y. Y. Zhu, &ldquo;Negative refraction of acoustic waves in two-dimensional sonic crystals&rdquo;, Physical Review B 72, 033108 (2005).</p> <p dir="ltr">25. D. Torrent, J. Sanchez-Dehesa, &ldquo;Acoustic metamaterials for new two-dimensional sonic devices&rdquo;, New Journal of Physics 9, 323 (2007).</p> <p dir="ltr">26. S. C. S. Lin, T. J. Huang, J. H. Sun, T. T. Wu, &ldquo;Gradient-index phononic crystals&rdquo;, Physical Review B 79, 094302 (2009).</p> <p dir="ltr">27. M. J. Chiou, Y. C. Lin, T. Ono, M. Esashi, S. L. Yeh, T. T. Wua, &ldquo;Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates&rdquo;, Ultrasonics 54, 1984-1990 (2014).</p> <p dir="ltr">28. T. P. Martin, C. J. Naify, E. A. Skerritt, C. N. Layman, M. Nicholas, D. C. Calvo, G. J. Orris, &ldquo;Transparent gradient index lens for underwater sound based on phase advance&rdquo;, Physical Review Applied 4, 034003 (2015).</p> <p dir="ltr">29. S. C. S. Lin, B. R. Tittmann, T. J. Huang, &ldquo;Design of acoustic beam aperture modifier using gradient-index phononic crystals&rdquo;, Journal of applied physics 111, 123510 (2012).</p> <p dir="ltr">30. Y. Tian, Z. Tan, X. Han, W. Li, &ldquo;Phononic crystal lens with an asymmetric scatterer&rdquo;, Journal of Physics D: Applied Physics 52, 025102 (2018).</p> <p dir="ltr">31. Z. Tan, Y. Wei, Y. Tian, X. Han, &ldquo;Gradient negative refraction index phononic crystal lens with a rotating scatterer&rdquo;, Materials Research Express 6, 096203 (2019).</p> <p dir="ltr">32. A. Climente, D. Torrent, J. Sanchez-Dehesa, &ldquo;Gradient index lenses for flexural waves based on thickness variations&rdquo;, Applied Physics Letters 105, 064101 (2014).</p> <p dir="ltr">33. S. C. S. Lin, B. R. Tittmann, J. H. Sun, T. T. Wu, T. J. Huang, &ldquo;Acoustic beamwidth compressor using gradientindex phononic crystals&rdquo;, Journal of Physics D: Applied Physics 42, 185502 (2009).</p> <p dir="ltr">34. K. Deng, Y. Ding, Z. He, Zh. Liu, H. Zhao, J. Shi, &ldquo;Graded negative index lens with designable focal length by phononic crystal&rdquo;, Journal of Physics D: Applied Physics 42, 185505 (2009).</p> <p dir="ltr">35. A. Khelif, A. Adibi, Phononic Crystals, Springer, New York, (2016).</p> <p dir="ltr">36. C. Gomez-Reino, M. V. Perez, C. Bao, Gradient-index Optics: Fundamentals and Applications, 5th ed, Springer, Berlin, (2002).</p> <p dir="ltr">37. E. Centeno, D. Cassagne, J. P. Albert, &ldquo;Mirage and superbending effect in two-dimensional graded photonic crystals&rdquo;, Physical Review B 73, 235119 (2006).</p> <p dir="ltr">38. M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen, P. Sheng, &ldquo;Negative-refraction imaging with two-dimensional phononic crystals&rdquo;, Physical Review B 72, 064306 (2005).</p> <p dir="ltr">39. P. A. Deymier, Acoustic Metamaterials and Phononic Crystals, 1th ed, Springer, Berlin, (2013).</p> <p dir="ltr">40. W. Wilson, D. Bradley, &ldquo;Speed of sound in four primary alcohols as a function of temperature and pressure&rdquo;, The Journal of the Acoustical Society of America 36, 333-337 (1964).</p>