بررسی پاسخ یک برداشت گر انرژی مگنتو-الکترو-الاستیک به ضربه مکانیکی.
پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8)
کد مقاله : 1066-ISAV2022 (R1)
نویسندگان
1گروه مکانیک- دانشکده فنی و مهندسی- دانشگاه حکیم سبزواری-سبزوار- ایران
2گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران
چکیده
این مطالعه به بررسی برداشت انرژی از سیستمهای مبتنی بر مواد مدرج تابعی مگنتو-الکترو-الاستیک تحت شتاب ضربه میپردازد. با استفاده از روش ریتز همراه با تئوری تیر اویلر-برنولی، معادلات کاهش یافته حاکم بر حرکت سیستم به دست میآیند. در ادامه با نادیده گرفتن تأثیر جملات مربوط به لایه مگنتو-الکترو-الاستیک و میل دادن شاخص گرادیان به سمت بینهایت، نتایج ارائه شده با یافته های موجود در ادبیات مقایسه و صحت سنجی میشوند. سپس با استفاده از نمودار طیف ضربه برای یک سیستم جرم-فنر، تأثیر مدت زمان اعمال ضربه بر میزان توان قابل برداشت از سیستم مورد بررسی قرار گرفته و زمان بهینه تعیین میگردد. نتایج حاکی از آنند که اگرچه استفاده از نمودار طیف ضربه مربوط به یک سیستم جرم-فنر میتواند زمان بهینه را با دقت نسبتا مناسبی پیش بینی کند، برای داشتن زمان بهینه دقیق میبایست از نمودار طیف ضربه برای توان الکتریکی برداشت شده استفاده نمود. در نهایت یک مطالعه پارامتری نیز برای بررسی اثر شاخص گرادیان بر بیشینه مقدار ولتاژ و توان قابل برداشت از محیط انجام میشود. نتایج حاکی از آنست که افزایش شاخص گرادیان با کاهش کسر حجمی ماده مگنتو-الکترو-الاستیک در لایه مولد انرژی الکتریکی، موجب کاهش توان قابل برداشت میشود.
کلیدواژه ها
موضوعات
Title
Investigating the response of a Magneto-Electro-Elastic energy harvester to mechanical impact.
Authors
Jalal Khaghanifard, Amir Reza Askari, Kiarash Daneshjo, Mohsen Taghizadeh
Abstract
This study investigates harvesting energy from systems made of Functionally Graded Magneto-Electro-Elastic Materials (FGMEEM) undergoing impact acceleration. Using the Ritz method together with the Euler-Bernoulli beam theory, the reduced governing equations of motion associated with the system are obtained. Subsequently, neglecting the effect of the terms related to the magneto-electro-elastic layer and leading the gradient index to infinity, the presented results are compared and verified by those available in the literature. Then, using the mass-spring shock spectrum diagram, the influence of shock duration on the amounts of harvested power is investigated and the optimal duration is determined. The results indicate that although employing the shock spectrum diagram associated with a mass-spring system can predict the optimal duration with relatively good accuracy, to have more accurate results, one should hire the shock spectrum diagram associated with the harvested power. Finally, a parametric study is also conducted to investigate the effect of the gradient index on the maximum amount of voltages and powers that can be scavenged from the environment. The results indicate that increasing the gradient index by reducing the volume fraction of the magneto-electro-elastic material in the electric energy generator layer makes a decrease in the harvested power.
Keywords
Energy harvester, Functionally Graded Magneto-Electro-Elastic Materials, Mechanical impact
مراجع
<p dir="ltr">1. Borowiec, M., G. Litak, M. Friswell, S. Ali, S. Adhikari, A. Lees, and O. Bilgen, "Energy harvesting in piezoelastic systems driven by random excitations", International journal of structural stability and dynamics 13, 1340006, (2013).</p>
<p dir="ltr">2. Joseph, G.V., G. Hao, and V. Pakrashi, "Extreme value estimates using vibration energy harvesting", Journal of Sound and Vibration 437, 29-39, (2018).</p>
<p dir="ltr">3. Liang, H., G. Hao, and O.Z. Olszewski, "A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms", Sensors and Actuators A: Physical 331, 112743, (2021).</p>
<p dir="ltr">4. Hadas, Z., V. Vetiska, V. Singule, O. Andrs, J. Kovar, and J. Vetiska, "Energy harvesting from mechanical shocks using a sensitive vibration energy harvester". International Journal of Advanced Robotic Systems 9, (2012).</p>
<p dir="ltr">5. Roundy, S., P.K. Wright, and J.M. Rabaey, Energy scavenging for wireless sensor networks, Springer, New York 2003.</p>
<p dir="ltr">6. Blad, T., D.F. Machekposhti, J. Herder, A. Holmes, and N. Tolou. "Vibration energy harvesting from multidirectional motion sources", International Conference on Manipulation, Automation and Robotics at Small Scales, (2018).</p>
<p dir="ltr">7. Daneshjou, K., R. Talebitooti, and M. Kornokar, "Vibroacoustic study on a multilayered functionally graded cylindrical shell with poroelastic core and bonded-unbonded configuration", Journal of Sound and Vibration 393, 157-175, (2017).</p>
<p dir="ltr">8. Sola, A., D. Bellucci, and V. Cannillo, "Functionally graded materials for orthopedic applications–an update on design and manufacturing", Biotechnology Advances 34, 504-531, (2016).</p>
<p dir="ltr">9. Kang, Y.-A. and X.-F. Li, "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", International Journal of Non-Linear Mechanics 44, 696-703, (2009)</p>
<p dir="ltr">10. Shi, Y., H. Yao, and Y.-w. Gao, "A functionally graded composite cantilever to harvest energy from magnetic field", Journal of Alloys and Compounds 693, 989-999, (2017).</p>
<p dir="ltr">11. Van Suchtelen, J., "Product properties: a new application of composite materials", Philips Research Reports 27, 28- 37, (1972).</p>
<p dir="ltr">12. Vaezi, M., M.M. Shirbani, and A. Hajnayeb, "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Physica E: Low-dimensional Systems and Nanostructures 75, 280-286, (2016).</p>
<p dir="ltr">13. Lee, J., J.G. Boyd IV, and D.C. Lagoudas, "Effective properties of three-phase electro-magneto-elastic composites", International Journal of Engineering Science 43, 790-825, (2005).</p>
<p dir="ltr">14. Shishesaz, M., M.M. Shirbani, H.M. Sedighi, and A. Hajnayeb, "Design and analytical modeling of magneto-electromechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system", Journal of Sound and Vibration 425, 149-169, (2018).</p>
<p dir="ltr">15. Ylli, K., D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, and Y. Manoli, "Energy harvesting from human motion: exploiting swing and shock excitations", Smart Materials and Structures 24, 025029, (2015).</p>
<p dir="ltr">16. Younis, M.I., D. Jordy, and J.M. Pitarresi, "Computationally efficient approaches to characterize the dynamic response of microstructures under mechanical shock", Journal of Microelectromechanical Systems 16, 628-638, (2007).</p>
<p dir="ltr">17. Askari, A.R. and S. Lenci, "Size-dependent response of electrically pre-deformed micro-plates under mechanical shock incorporating the effect of packaging a frequency-domain analysis", Journal of the Brazilian Society of Mechanical Sciences and Engineering 43, 1-21, (2021).</p>
<p dir="ltr">18. Rekik, M., S. El-Borgi, and Z. Ounaies, "An axisymmetric problem of an embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium", Applied Mathematical Modeling 38, 1193-1210, (2014).</p>
<p dir="ltr">19. Ma, J., L.-L. Ke, and Y.-S. Wang, "Sliding frictional contact of functionally graded magneto-electro-elastic materials under a conducting flat punch", Journal of Applied Mechanics 82, (2015).</p>
<p dir="ltr">20. Li, X., H. Ding, and W. Chen, "Three-dimensional analytical solution for functionally graded magneto–electro-elastic circular plates subjected to uniform load", Composite Structures 83, 381-390, (2008).</p>
<p dir="ltr">21. Singh, S. and I. Singh, "Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material", Engineering Fracture Mechanics 247, 107640, (2021).</p>
<p dir="ltr">22. Suresh, S. and A. Mortensen, Fundamentals of functionally graded materials. The Institut of Materials, 1998.</p>
<p dir="ltr">23. Hashemi, R., "Magneto-electro-elastic properties of multiferroic composites containing periodic distribution of general multi-coated inhomogeneities", International Journal of Engineering Science 103, 59-76, (2016).</p>
<p dir="ltr">24. Reddy, J., "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates" International Journal of Engineering Science 48, 1507-1518, (2010).</p>
<p dir="ltr">25. JESD22, J.S., B111: "Board level drop test method of components for handheld electronic products", JEDEC Solid State Technology Association, (2003).</p>
<p dir="ltr">26. Meirovitch, L. and R. Parker, "Fundamentals of vibrations", Applied Mechanics Reviews 54, 100-101, (2001).</p>
<p dir="ltr">27. Reddy, J.N., Energy principles and variational methods in applied mechanics. John Wiley & Sons, New York, 2017.</p>
<p dir="ltr">28. Derayatifar, M., M. Tahani, and H. Moeenfard, "Nonlinear analysis of functionally graded piezoelectric energy harvesters", Composite Structures 182, 199-208, (2017).</p>