مطالعه بر روی میدان آکوستیک سیستم فراصوت توان بالا جهت ایجاد امواج فراصوت در محیط گازی

پذیرفته شده برای ارائه شفاهی ، صفحه 1-9 (9)
کد مقاله : 1047-ISAV2022 (R3)
نویسندگان
1دانشجوی ارشد دانشگاه علم و صنعت ایران
2استادیار دانشگاه علم و صنعت ایران
چکیده
رادیاتور فراصوتی توان بالا (ایربورن فراصوت) یک فناوری سبز است که پتانسیل زیادی برای استفاده در مواد غذایی (خشک کردن مواد غذایی) و صنایع مرتبط با محیط زیست دارد. هدف این فناوری ایجاد تغییرات موقت و یا دائمی در محیط، اشیا و مواد از طریق انتشار امواج فراصوت با شدت زیاد از طریق هوا و محیط‌های چند فازی است. به طور خاص، اثر غیرخطی تولید شده در چنین محیط‌هایی دلیل نتایج مفید فراصوت توان بالا در کاربردهای مختلف می‌باشد. فناوری فراصوت توان بالا با افزایش سرعت سینتیک خشک کردن، یک محصول نهایی با کیفیت خوب را به دست می‌دهد. هدف این مقاله بررسی میدان آکوستیک ایربورن فراصوت در جهت تولید امواج فراصوت توان بالا در هوا می‌باشد. بنابراین، ابتدا تحلیل میدان آکوستیک ایربورن فراصوت به صورت عددی در نرم‌افزار انجام و در نهایت، تعیین میدان آکوستیک ایربورن از طریق آزمون تجربی به منظور بهینه شدن اثر سیستم انجام شده است.
کلیدواژه ها
 
Title
Study on the acoustic field of high power ultrasound system to create ultrasound waves in gaseous media
Authors
Ariana Akbari, Rezvan Abedini
Abstract
The high-power ultrasonic radiator (airborne ultrasound) is a green technology that has great potential for using in food (food drying) and environment-related industries. The purpose of this technology is to create temporary or permanent changes in the environment, objects and materials through the emission of high-intensity ultrasound waves through air and multiphase medias. In particular, the nonlinear effect produced in such medias is the reason for the useful results of ultrasound in various applications. High power ultrasonic technology gives a good quality final product by increasing the speed of drying kinetics. The purpose of this article is to investigate the acoustic field of airborne ultrasound in order to produce high power ultrasound waves in the air. Therefore, firstly, the analysis of the airborne acoustic field was performed numerically in the software, and finally, the determination of the airborne acoustic field was done through experimental testing in order to optimize the effect of the system.
Keywords
high power ultrasonic vibrations, simulation of ultrasound waves, Airborne, Drying food
مراجع
<p>1. Charoux, C.M., et al., Applications of airborne ultrasonic technology in the food industry. Journal of Food Engineering, 2017. 208: p. 28-36.</p> <p>2. Riera, E., et al., Application of high-power ultrasound for drying vegetables. 2002.</p> <p>3. Villamiel, M., E. Riera, and J.V. Garc&iacute;a-P&eacute;rez, The use of ultrasound for drying, degassing and defoaming of foods. 2021.</p> <p>4. Nowacka, M., et al., Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 2012. 113(3): p. 427-433.</p> <p>5. Feng, H., G.V. Barbosa-C&aacute;novas, and J. Weiss, Ultrasound technologies for food and bioprocessing. Vol. 1. 2011: Springer.</p> <p>6. Andr&eacute;s, R.R., et al. Description of an ultrasonic technology for food dehydration process intensification. in Proceedings of Meetings on Acoustics 22ICA. 2016. Acoustical Society of America.</p> <p>7. Andr&eacute;s, R.R., et al., Study of the near field generated by a power ultrasonic transducer. Euroregio 2016, 2016.</p> <p>8. Andr&eacute;s, R.R., et al., EFFECT OF THE DESIGN OF THE MECHANICAL AMPLIFIER IN THE BEHAVIOUR OF A HIGH POWER ULTRASONIC TRANSDUCER.</p> <p>9. Zhu, X., et al., Applications of ultrasound to enhance fluidized bed drying of Ascophyllum Nodosum: Drying kinetics and product quality assessment. Ultrason Sonochem, 2021. 70: p. 105298.</p> <p>10. Andr&eacute;s, R.R., et al., Acoustic field generated by an innovative airborne power ultrasonic system with reflectors for coherent radiation. Ultrasonics, 2019. 99: p. 105963.</p> <p>11. Selicani, G.V. and F. Buiochi, Stepped-plate ultrasonic transducer used as a source of harmonic radiation force optimized by genetic algorithm. Ultrasonics, 2021. 116: p. 106505.</p> <p>12. Gallego-Ju&aacute;rez, J.A. and K.F. Graff, Power ultrasonics: applications of high-intensity ultrasound. 2014: Elsevier.</p> <p>13. Nakamura, K., Evaluation methods for materials for power ultrasonic applications. Japanese Journal of Applied Physics, 2020. 59(SK): p. SK0801.</p> <p>14. Andr&eacute;s Garc&iacute;a, R. and E. Riera, Considerations regarding the design of a power ultrasonic transducer with flat rectangular plate. 2017.</p> <p>15. Chen, S., et al., Characterization and modeling of the acoustic field generated by a curved ultrasound transducer for non-contact structural excitation. Journal of Sound and Vibration, 2018. 432: p. 33-49.</p> <p>16. Durris, L., et al., Airborne ultrasonic transducer. Ultrasonics, 1996. 34(2-5): p. 153-158.</p> <p>17. Rodr&iacute;guez Corral, G., et al., Industrial requirements in high-power ultrasonic transducers for defoaming. 2007.</p> <p>18. Hansen, C.H., Fundamentals of acoustics. Occupational Exposure to Noise: Evaluation, Prevention and Control. World Health Organization, 2001. 1(3): p. 23-52.</p> <p>19. Thinh, N.V. and H. Le, Researching to Determine the Characteristic Parameters of the Power Ultrasonic Transducer by Finite Element Method and COMSOL-MULTIPHYSICS Program. International journal of engineering research and technology, 2019. 8.</p> <p>20. Andr&eacute;s Garc&iacute;a, R.R., J.A. C&aacute;rcel, and E. Riera, New ultrasonically assisted drier for atmospheric freeze-drying</p> <p>processes. 2018. 21. .</p>