Increasing the efficiency of Piezoelectric Energy Harvester Using Trapezoidal Auxetic booster

پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8) XML اصل مقاله (615.37 K)
کد مقاله : 1038-ISAV2022 (R2)
نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران
چکیده
A model of an auxetic piezoelectric energy harvester consisting of a cantilever, auxetic substrate, and piezoelectric layer is developed in this study. Firstly, the auxetic harvester model with an auxetic cell is presented. Harvested power for this model is compared with a plain piezoelectric energy harvester. In the next step, the new auxetic model with trapezoidal geometry is presented. Harvested power of the trapezoidal harvester is compared with a plain harvester and rectangular harvester with an auxetic cell. All the analysis has been performed using the finite element method. Mesh size sensitivity analysis of the models is presented, and the finite element model is verified by previous experimental studies. Present investigation il-lustrates that harvested power of trapezoidal auxetic energy harvester in resonant frequency could improve to twenty times more than plain harvester. Utilizing trapezoidal auxetic booster as the substrate in piezoelectric energy harvester leads to increasing the density of harvested power of the auxetic energy harvester by 82.5%.
کلیدواژه ها
 
Title
Increasing the efficiency of Piezoelectric Energy Harvester Using Trapezoidal Auxetic booster
Authors
Mohsen Maleki, Seyed Houssein Dibajian, Abbas Rohani bastami
Abstract
A model of an auxetic piezoelectric energy harvester consisting of a cantilever, auxetic substrate, and piezoelectric layer is developed in this study. Firstly, the auxetic harvester model with an auxetic cell is presented. Harvested power for this model is compared with a plain piezoelectric energy harvester. In the next step, the new auxetic model with trapezoidal geometry is presented. Harvested power of the trapezoidal harvester is compared with a plain harvester and rectangular harvester with an auxetic cell. All the analysis has been performed using the finite element method. Mesh size sensitivity analysis of the models is presented, and the finite element model is verified by previous experimental studies. Present investigation il-lustrates that harvested power of trapezoidal auxetic energy harvester in resonant frequency could improve to twenty times more than plain harvester. Utilizing trapezoidal auxetic booster as the substrate in piezoelectric energy harvester leads to increasing the density of harvested power of the auxetic energy harvester by 82.5%.
Keywords
Increasing the efficiency of Piezoelectric Energy Harvester Using Trapezoidal Auxetic booster
مراجع
<p>[1] Y. Liao, J. Liang, "Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters", Mechanical Systems and Signal Processing. 123 403&ndash;425 (2019).</p> <p>[2] G. Mart&iacute;nez-Ayuso, M.I. Friswell, S. Adhikari, H.H. Khodaparast, C.A. Featherston, "Energy harvesting using porous piezoelectric beam with impacts", Procedia Engineering. 199 3468&ndash; 3473 (2017).</p> <p>[3] J. Roscow, Y. Zhang, J. Taylor, C.R. Bowen, "Porous ferroelectrics for energy harvesting&nbsp;applications", European Physical Journal: Special Topics. 224 2949&ndash;2966 (2015).</p> <p>[4] G. Mart&iacute;nez-Ayuso, H. Haddad Khodaparast, Y. Zhang, C. Bowen, M. Friswell, A. Shaw, H. Madinei, "Model Validation of a Porous Piezoelectric Energy Harvester Using Vibration Test Data", Vibration. 1 123&ndash;137 (2018).</p> <p>[5] Q. Li, Y. Kuang, M. Zhu, "Auxetic piezoelectric energy harvesters for increased electric power output", AIP Advances. 7 (2017).</p> <p>[6] R. Ambrosio, A. Jimenez, J. Mireles, M. Moreno, K. Monfil, H. Heredia, "Study of piezoelectric energy harvesting system based on PZT", Integrated Ferroelectrics. 126 77&ndash;86 (2011).</p> <p>[7] A. Erturk, D.J. Inman, Mechanical Considerations for Modeling of Vibration-Based Energy Harvesters, in: Vol. 1 21st Bienn. Conf. Mech. Vib. Noise, Parts A, B, C, ASME, 2007: pp. 769&ndash; 778.</p> <p>[8] A. Erturk, D.J. Inman, "On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters", Journal of Intelligent Material Systems and Structures. 19 1311&ndash;1325 (2008).</p> <p>[9] A. Erturk, D.J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Materials and Structures. 18 025009 (2009).</p> <p>[10] S. Adhikari, M.I. Friswell, D.J. Inman, "Piezoelectric energy harvesting from broadband random vibrations", Smart Materials and Structures. 18 115005 (2009).</p> <p>[11] N.A. Siddiqui, D. Kim, R.A. Overfelt, B.C. Prorok, W. Laboratories, M. Engineering, A. Al, "Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting", (2015).</p> <p>[12] G. Zhang, S. Gao, H. Liu, S. Niu, "A low frequency piezoelectric energy harvester with trapezoidal cantilever beam : theory and experiment", Microsystem Technologies. (2016).</p> <p>[13] N. Chen, V. Bedekar, "Modeling , Simulation and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting", 6 5&ndash;18 (2017).</p> <p>[14] M. Mir, M.N. Ali, J. Sami, U. Ansari, "Review of mechanics and applications of auxetic structures", Advances in Materials Science and Engineering. 2014 1&ndash;18 (2014).</p> <p>[15] M. Taylor, L. Francesconi, M. Gerend&aacute;s, A. Shanian, C. Carson, K. Bertoldi, "Low porosity metallic periodic structures with negative poisson&rsquo;s ratio", Advanced Materials. 26 2365&ndash;2370 (2014).</p> <p>[16] A. Bacigalupo, M. Lepidi, G. Gnecco, M.L. De Bellis, A. Bacigalupo, "Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors.", Smart Materials and Structures. (2017).</p> <p>[17] Y. Umino, T. Tsukamoto, S. Shiomi, K. Yamada, T. Suzuki, "Development of vibration energy harvester with 2D mechanical metamaterial structure", 1052 3&ndash;6 (2018).</p> <p>[18] W.J.G. Ferguson, Y. Kuang, K.E. Evans, C.W. Smith, M. Zhu, "Auxetic structure for increased power output of strain vibration energy harvester", Sensors and Actuators, A: Physical. 282 90&ndash; 96 (2018).</p> <p>[19] P. Eghbali, D. Younesian, S. Farhangdoust, "Enhancement of piezoelectric vibration energy harvesting with auxetic boosters", International Journal of Energy Research. 44 1179&ndash;1190 (2020).</p> <p>[20] G. Mart&iacute;nez-Ayuso, M.I. Friswell, S. Adhikari, H.H. Khodaparast, H. Berger, "Homogenization of porous piezoelectric materials", International Journal of Solids and Structures. 113&ndash;114 218&ndash; 229 (2017).</p>