ارزیابی آسیب مبتنی بر ارتعاش در تغییرات محیطی توسط یادگیری محلی بدون نظارت
پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8)
کد مقاله : 1037-ISAV2022 (R2)
نویسندگان
1دانشجو دکتری، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکز، تهران، ایران
2استادیار پژوهشی پژوهشگاه استاندارد، پژوهشکده فناوری و مهندسی، گروه پژوهشی ساختمانی و معدنی، کرج، ایران
چکیده
پایش سلامت سازههای عمرانی با اندازهگیری مداوم دادههای ارتعاش یکی از تکنیکهای موثر و قابل اعتماد برای اطمینان از ایمنی سازه و قابلیت سرویس است. تغییرات محیطی و روش شناسی ارزیابی خسارت دو چالش مهم هستند که به دلیل بروز خطاهای جدی نقش مهمی در دستیابی به نتایج برجسته ایفا می کنند. این تحقیق قصد دارد یک روش جدید مبتنی بر ارتعاش را تحت ایده یادگیری محلی بدون نظارت برای پرداختن به چالشها پیشنهاد کند. روش پیشنهادی شامل دو مرحله خوشه بندی داده ها و ارزیابی خسارت است. در مرحله اول، یک الگوریتم خوشهبندی جدید به نام خوشهبندی پیک چگالی گراف مبتنی بر غیرمستقیم محلی (LUG-DPC) برای تقسیم ویژگیهای دینامیک به خوشههای از پیش تعیینشده و ارائه اطلاعات محلی ارائه میشود. مرحله دوم از چنین اطلاعات محلی برای تخمین بردارهای میانگین محلی و ماتریس های کوواریانس محلی استفاده می کند که عناصر اصلی آشکارساز ناهنجاری را بر اساس فاصله Mahalanobis می سازد. مشارکتهای اصلی این مقاله شامل توسعه یک روش نوآورانه به کمک یادگیری ماشین و معرفی LUG-DPC برای ارزیابی آسیب است. نتایج نشان میدهد که روش پیشنهادی میتواند اثرات محیطی را کاهش داده و نتایج منطقیی را با خطاهای غیر قابل ملاحظه در مقایسه با برخی از تکنیکهای شناخته شده به دست آورد.
کلیدواژه ها
Title
Vibration-based Damage Assessment in Environ-ment Changes by Locally Unsupervised Learning
Authors
Mohammadreza Mahmoudkelayeh, Behzad Saeedi Razavi
Abstract
Health monitoring of civil structures by continuous measurements of vibration data is one of the effective and reliable techniques for ensuring structural safety and serviceability. Envi-ronment changes and the methodology for damage assessment are two important challenges that play critical roles in achieving outstanding results due to the emergence of serious errors. This research intends to propose a new vibration-based method under the idea of locally un-supervised learning for addressing the challenges. The proposed method consists of two steps of data clustering and damage assessment. In the first step, a new clustering algorithm called locally undirected-based graph density peak clustering (LUG-DPC) is presented to split dy-namic features into pre-determined clusters and supply local information. The second step utilizes such local information to estimate local mean vectors and local covariance matrices that make the main elements of the anomaly detector based on the Mahalanobis distance. The major contributions of this paper contain developing an innovative machine learning-aided method and introducing the LUG-DPC for damage assessment Long-term continuous natural frequencies of a full-scale concrete bridge are used to verify the proposed method with some comparisons. Result indicates the proposed method can alleviate the environment effects and obtain reasonable results with inconsiderable errors compared to some well-known tech-niques
Keywords
Structural health monitoring, environment variability, unsupervised learning, Clustering
مراجع
<p>1. H.-N. Li, L. Ren, Z.-G. Jia, T.-H. Yi, and D.-S. Li, "State-of-the-art in structural health monitoring of large and complex civil infrastructures". Journal of Civil Structural Health Monitoring 6(1), 3-16 (2016).</p>
<p>2. A. Malekloo, E. Ozer, M. AlHamaydeh, and M. Girolami, "Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights". Structural Health Monitoring 21(4), 1906-1955 (2022).</p>
<p>3. H. Sarmadi and A. Entezami, "Application of supervised learning to validation of damage detection". Archive of Applied Mechanics 91(1), 393-410 (2021).</p>
<p>4. H. Sarmadi and K.-V. Yuen, "Early damage detection by an innovative unsupervised learning method based on kernel null space and peak-over-threshold". Computer-Aided Civil and Infrastructure Engineering 36(9), 1150-1167 (2021).</p>
<p>5. M. H. Daneshvar and H. Sarmadi, "Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring". Engineering Structures 256, 114059 (2022).</p>
<p>6. A. Entezami, H. Shariatmadar, and C. De Michele, "Non-parametric empirical machine learning for short-term and long-term structural health monitoring". Structural Health Monitoring, (2022).</p>
<p>7. H. Sarmadi, A. Entezami, M. Salar, and C. De Michele, "Bridge health monitoring in environmental variability by new clustering and threshold estimation methods". Journal of Civil Structural Health Monitoring 11(3), 629-644 (2021).</p>
<p>8. A. Entezami, H. Shariatmadar, and S. Mariani, "Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection". Advances in Engineering Software 150, 102923 (2020).</p>
<p>9. H. Sarmadi and K.-V. Yuen, "Structural health monitoring by a novel probabilistic machine learning method based on extreme value theory and mixture quantile modeling". Mechanical Systems and Signal Processing 173, 109049 (2022).</p>
<p>10. A. Entezami, S. Mariani, and H. Shariatmadar, "Damage detection in largely unobserved structures under varying environmental conditions an autoregressive spectrum and multi-level machine learning methodology". Sensors 22(4), 1400 (2022).</p>
<p>11. Y. Zhou and L. Sun, "Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A periodicity perspective". Mechanical Systems and Signal Processing 131, 505-523 (2019).</p>
<p>12. H. Sarmadi, "Investigation of machine learning methods for structural safety assessment under variability in data: Comparative studies and new approaches". Journal of Performance of Constructed Facilities 35(6), 04021090 (2021).</p>
<p>13. W.-H. Hu, Á. Cunha, E. Caetano, R. G. Rohrmann, S. Said, and J. Teng, "Comparison of different statistical approaches for removing environmental/operational effects for massive data continuously collected from footbridges". Structural Control and Health Monitoring 24(8), e1955 (2017).</p>
<p>14. A.-M. Yan, G. Kerschen, P. De Boe, and J.-C. Golinval, "Structural damage diagnosis under varying environmental conditions—part II: local PCA for non-linear cases". Mechanical Systems and Signal Processing 19(4), 865-880 (2005).</p>
<p>15. H. Sarmadi, A. Entezami, B. Saeedi Razavi, and K.-V. Yuen, "Ensemble learning-based structural health monitoring by Mahalanobis distance metrics". Structural Control and Health Monitoring 28(2), e2663 (2021).</p>
<p>16. A. Entezami, H. Sarmadi, M. Salar, C. De Michele, and A. Nadir Arslan, "A novel data-driven method for structural health monitoring under ambient vibration and high dimensional features by robust multidimensional scaling". Structural Health Monitoring, (2021).</p>
<p>17. A. Entezami, H. Sarmadi, B. Behkamal, and S. Mariani, "Health Monitoring of Large-Scale Civil Structures: An Approach Based on Data Partitioning and Classical Multidimensional Scaling". Sensors 21(5), 1646 (2021).</p>
<p>18. H. Sarmadi, A. Entezami, B. Behkamal, and C. De Michele, "Partially online damage detection using longterm modal data under severe environmental effects by unsupervised feature selection and local metric learning". Journal of Civil Structural Health Monitoring, (2022).</p>
<p>19. D. Cheng, Q. Zhu, J. Huang, Q. Wu, and L. Yang, "Clustering with Local Density Peaks-Based Minimum Spanning Tree". IEEE Transactions on Knowledge and Data Engineering 33(2), 374-387 (2021).</p>
<p>20. Q. Zhu, J. Feng, and J. Huang, "Natural neighbor: A self-adaptive neighborhood method without parameter K". Pattern Recognition Letters 80, 30-36 (2016).</p>
<p>21. R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a data set via the gap statistic". Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2), 411-423 (2001).</p>
<p>22. E. Reynders and G. De Roeck, Continuous Vibration Monitoring and Progressive Damage Testing on the Z24 Bridge, in Encyclopedia of Structural Health Monitoring. 2009, John Wiley & Sons, Inc.: Chichester, United Kingdom.</p>