پیاده‌سازی تابع لیاپانوف جهت کنترل پایداری خودرو الکتریکی موتور در چرخ

پذیرفته شده برای ارائه شفاهی ، صفحه 1-9 (9) XML اصل مقاله (1.67 MB)
کد مقاله : 1020-ISAV2022 (R2)
نویسندگان
1دانشکده مهندسی مکانیک
2دانشکده مکانیک دانشگاه خواجه نصیرالدین طوسی
3سازمان پژوهش های علمی و صنعتی ایران، پژوهشکده مکانیک
چکیده
هدف این پژوهش توسعه یک الگوریتم کنترل جهت بهبود پایداری و فرمان پذیری در خودرو الکتریکی موتور در چرخ می‌باشد. تمرکز این پژوهش بر ارائه الگوریتم سیستم کنترل جانبی خودرو الکتریکی موتور در چرخ در چارچوب یک استراتژی کنترل چند لایه می‌باشد. استراتژی کنترل پیشرفته پیشنهادی شامل دو کنترلر مستقل و هماهنگ مبتنی بر مدل لیاپانوف می‌باشد. از تداخل اهداف مابین فرمان‌پذیری و پایداری ممانعت می‌گردد. هماهنگی با توجه به اطلاعات اصطکاک جاده و عملکرد خودرو تضمین می‌گردد. هدف کنترل در منطقه رانندگی خطی، تقویت پاسخ فرمان خودرو با ردیابی یک سرعت زاویه‌ای خودرو حول محور یاو می‌باشد. گشتاور چرخشی تولید شده در جهت اهداف کنترل تبدیل به چهار ورودی گشتاور در چرخ خودرو الکتریکی موتور در چرخ می‌گردد. الگوریتم کنترل پیشنهادی برای توزیع گشتاور موثر جهت حفظ سرعت طولی خودرو به خوبی عمل می‌نماید. نتایج حاصل از شبیه‌سازی های انجام شده بر روی یک مدل کامل غیرخطی خودرو الکتریکی موتور چرخ، عملکرد مطلوب و موثر الگوریتم کنترل پیشنهادی را جهت بهبود فرمان‌پذیری و پایداری خودرو الکتریکی موتور در چرخ را نشان می‌دهد.
کلیدواژه ها
موضوعات
 
Title
Implementation of Lyapunov function to stability control of in-wheel motors electric vehicle
Authors
Mohammad amin Ghomashi, Reza Kazemi, Hadi Sazgar
Abstract
The aim of this research is to develop a control algorithm to improve the stability and controllability of the in-wheel motors electric vehicle. The focus of this research is on presenting the algorithm of the lateral control system of the in-wheel motors electric vehicle in the framework of multi layers control strategy. The proposed advanced control strategy includes two independent and coordinated controllers based on the Lyapunov model. The interference of goals between controllability and stability is avoided. Coordination is guaranteed with regard to road friction information and vehicle performance. The control objective in the linear driving region is to enhance the vehicle's steering response by tracking an angular velocity of the vehicle around the yaw axis. The yaw torque produced for control purposes is converted into four torque inputs in the wheel of the electric motor in the wheel. The proposed control algorithm works well to distribute the effective torque to maintain the vehicle's longitudinal speed. The results of the performed simulations on a complete non-linear model of the in-wheel motors electric vehicle show the optimal and effective performance of the proposed control algorithm to improve the controllability and stability of the motor-in-wheel electric vehicle.
Keywords
Steerability, Electric Vehicle, Vehicle Dynamic, stability
مراجع
<div class="page" title="Page 8"> <div class="layoutArea"> <div class="column" dir="ltr"><ol dir="ltr"> <li> <p><span>Xuedong, L., &ldquo;Design of the Sliding Mode Controller of TCS for Electric Vehicle,&rdquo; China Academic Journal Elec- </span><span>tronic Publishing House 37(2), 1006</span><span>&ndash;</span><span>9348(2020)02-0144-05, 2020. </span></p> </li> <li> <p><span>Wang, Y. Chen, D. Feng, X. Huang, and J. Wang, Development and Performance Characterization of an Electric Ground Vehicle with Independently Actuated in</span><span>&ndash;</span><span>Wheel Motors, Journal of Power Sources, Vol. 196, No. 8, pp. .2011 ,3971</span><span>&ndash;</span><span>3962 </span></p> </li> <li> <p><span>Murata, S., &ldquo;Innovation by in</span><span>-wheel-</span><span>motor Drive Unit,&rdquo; Vehicle System Dynamics 50(6):807&ndash;</span><span>830, June 2012. </span></p> </li> <li> <p><span>Ji, X. He, C. Lv, Y. Liu, and Jian Wu. A Vehicle Stability Control Strategy with Adaptive Neural Network Sliding Mode Theory Based on System Uncertainty Approximation, Vehicle System Dynamics, Vol. 56, No. 6, pp. 923</span><span>&ndash; </span><span>.2018 ,946 </span></p> </li> <li> <p><span>Panathula CB, Rosales A, Shtessel YB, Fridman LM. Closing Gaps for Aircraft Attitude Higher Order Sliding Mode Control Certification via Practical Stability Margins Identification. IEEE Transactions on Control Systems Technology, Vol. 26, No. 6, pp. 2020</span><span>&ndash;</span><span>34, 2018. </span></p> </li> <li> <p><span>M.V. Basin, P. Yu, Y.B. Shtessel, Hypersonic Missile Adaptive Sliding Mode Control Using Finite</span><span>&ndash; </span><span>and Fixed</span><span>&ndash; </span><span>Time Observers, IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, pp. 930</span><span>&ndash;</span><span>941, 2018. </span></p> </li> <li> <p><span>Acosta</span><span>&ndash;</span><span>L ́ua, B. Castillo</span><span>&ndash;</span><span>Toledo, and S. Di Gennaro, and A. Toro, Nonlinear Robust Regulation of Ground Vehicle Motion, Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, pp. 3871</span><span>&ndash;</span><span>3876, 2017. </span></p> </li> <li> <p><span>Acosta</span><span>&ndash;</span><span>L ́ua, B. Castillo</span><span>&ndash;</span><span>Toledo, and S. Di Gennaro, Nonlinear Output Robust Regulation of Ground Vehicles in Presence of Disturbances and Parameter Uncertainties, Proceedings of the 17th IFAC World Congress, Seoul, Ko- rea, July 6</span><span>&ndash;</span><span>11, pp. 141</span><span>&ndash;</span><span>146, 2018. </span></p> </li> <li> <p><span>Akaho, D., Nakatsu, M., Katsuyama, E., Takakuwa, K., and Yoshizue, K., &ldquo;Development of Veicle Dynamics Con- </span><span>trol System for In-Wheel-</span><span>Motor Vehicle,&rdquo; in Proceedings of the J</span><span>SAE Annual Congress, 20105533, Japan, 2010. </span></p> </li> <li> <p><span>Bianchi, A. Borri, G. Burgio, M. D. Di Benedetto, and S. Di Gennaro, Adaptive Integrated Vehicle Control using Active Front Steering and Rear Torque Vectoring, International Journal of Vehicle Autonomous Systems, Special </span><span>Issue on: &ldquo;Autonomous and Semi&ndash;Autonomous Control for Safe Driving of Ground Vehicles&rdquo;, Vol. 8, No. 2/3/4, </span><span>pp. 85</span><span>&ndash;</span><span>105, 2010. </span></p> </li> <li> <p><span>Bianchi, A. Borri, B. Castillo</span><span>&ndash;</span><span>Toledo, M.D. Di Benedetto, and S. Di Gennaro, Active Control of Vehicle Attitude with Roll Dynamics, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 7174</span><span>&ndash;</span><span>7179, 2011. </span></p> </li> <li> <p><span>Borri, D. Bianchi, M. D. Di Benedetto, and S. Di Gennaro, Optimal Workload Actuator Balancing and Dynamic Reference Generation in Active Vehicle Control, Journal of the Franklin Institute, Vol. 354, pp. 1722</span><span>&ndash;</span><span>1740, 2017. </span></p> </li> <li> <p><span>A. Tota et al., &lsquo;On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors&rsquo;, Int.J Automot. Technol., vol. 19, no. 5, pp. 811&ndash;</span><span>823, Oct. 2018, doi: 10.1007/s12239-018-0078-0, 2018. </span></p> </li> <li> <p><span>Zhiguo, Z., Jie, Y., and Xiaowei, W., &ldquo;Vehicle Speed Estimation Based on Distributed Kalman Filter for Four Wheel Drive Hybrid Electric Car,&rdquo; Journal of Mechanical Engineering (8), 2015.</span></p> </li> </ol> <div style="text-align: left;"> <div class="page" title="Page 9"> <div class="layoutArea"> <div class="column"><ol start="15"> <li> <p><span>Fu, R. Hoseinnezhad, K. Li, M. Hu, F. Huang, and F. Li, Vehicle Integrated Chassis Control via Multi</span><span>&ndash;</span><span>Input Multi</span><span>&ndash; </span><span>Output Sliding Mode Control, 2018 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 355</span><span>&ndash;</span><span>360, 2018. </span></p> </li> <li> <p><span>Canale, M., Fagiano, L., Milanese, M., &amp; Borodani, P. Robust vehicle yaw control using an active differential and IMC techniques. Control Engineering Practice, 2017. </span></p> </li> <li> <p><span>Zhao, H., Gao, B., Ren, B., and Chen, H.</span><span>&rdquo;Integrated control of in</span><span>-wheel motor electric vehicles using a triple step </span><span>nonlinear method.&rdquo; Journal of the Franklin Institute 352.2, 2015. </span></p> </li> <li> <p><span>Mitschke, M. and Wallentowitz, H., Vehicle Dynamics, Qiang, Chen YinsanYu Transl. Qinghua Univ. Press: Bei- jing China, 2009</span><span>. </span></p> </li> <li> <p><span>Ming, W. Deng, and Y. Wang, Integrated Chassis Control with Optimal Tire Force Distribution for Electric Vehi- cles, 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2504</span><span>&ndash;</span><span>2509, 2015. </span></p> </li> <li> <p><span>Van M. An Enhanced Tracking Control of Marine Surface Vessels Based on Adaptive Integral Sliding Mode Con- trol and Disturbance Observer. ISA Transactions, In Press, 2019. </span></p> </li> </ol></div> </div> </div> </div> </div> </div> </div>