کنترل مقاوم مسیرحرکت طولی خودرو الکتریکی موتور در چرخ با لحاظ تغییرات گشتاور موتور

پذیرفته شده برای ارائه شفاهی ، صفحه 1-9 (9) XML اصل مقاله (1.67 MB)
کد مقاله : 1007-ISAV2022 (R2)
نویسندگان
1دانشکده مهندسی مکانیک
2دانشگاه خواجه نصیرالدین طوسی
چکیده
هدف این پژوهش توسعه یک الگوریتم کنترل مقاوم جهت جبران تغییرات گشتاور و ردیابی مسیرهای مطلوب خودرو می‌باشد. عملکرد مطلوب کنترلر مقاوم در جهت کاهش اثرات تغییرات گشتاور می‌باشد. در الگوریتم کنترل پیشنهادی راهکارهای مطلوبی را در جهت تعقیب و ردیابی مسیر حرکت خودرو ارائه می‌گردد. از تکنیک کنترل مقاوم با بهره وزنی در جهت جبران تغییر گشتاور و ردیابی مسیرهای حرکت مطلوب خودرو استفاده می‌گردد. یک فاکتور وزنی در جهت تنظیم اهمیت ورودی خارجی و تغییرات گشتاور تنظیم می‌گردد. نتایج شبیه‌سازی‌های انجام شده به خوبی کارائی و قابلیت‌های مطلوب الگوریتم طراحی شده را نشان می‌دهد. عملکرد کنترل خودرو با لحاظ تغییرات گشتاور به خوبی بررسی می‌گردد و الگوریتم کنترلر مسیر مطلوب را با دقت بالا تعقیب می‌نماید و پایداری خودرو نیز تضمین می‌گردد. نتایج شبیه‌سازی‌های انجام شده از طریق نرم افزار Carsim و با بهره‌گیری از یک مدل مناسب خودرو صحه‌گذاری می‌گردد. و نتایج حاصل شده عملکرد مطلوب کنترلر پیشنهادی را در جهت جبرات تغییرات گشتاور به نمایش می‌گذارد.
کلیدواژه ها
موضوعات
 
Title
Robust longitudinal control of in-wheel motor electric vehicle with considering motor torque variations
Authors
Mohammad amin Ghomashi, Reza Kazemi
Abstract
The purpose of this research is to develop a robust control algorithm to compensate for torque changes and track the desired vehicle trajectories. The optimal performance of the robust controller is to reduce the effects of torque changes. In the proposed control algorithm, optimal solutions are provided to follow and track the vehicle motion path. The robust control technique with weighting gain is used to compensate for the torque change and track the desired motion trajectory of the vehicle. A weighting factor is set to adjust the importance of external input and torque changes. The results of the performed simulations show that the efficiency and desirable capabilities of the designed algorithm. The control performance of vehicle is well checked in terms of torque changes and the controller algorithm follows the desired trajectories with high precision and the vehicle stability is also guaranteed. The results of the performed simulations through the Carsim software are validated using a suitable vehicle model. And the obtained results show the optimal performance of the proposed controller in the direction of torque changes.
Keywords
Robust control, Electric Vehicle, dynamic vehicle, motor torque
مراجع
<div class="page" title="Page 8"> <div class="layoutArea"> <div class="column"><ol dir="ltr"> <li> <p><span>Hori, Future Vehicle Driven by Electricity and Control </span><span>&ndash; </span><span>Research on Four</span><span>&ndash;</span><span>Wheel</span><span>&ndash;Motored &lsquo;UOT March II&rsquo;, IEEE </span><span>Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 954</span><span>&ndash;</span><span>962, 2014. </span></p> </li> <li> <p><span>Wang, Y. Chen, D. Feng, X. Huang, and J. Wang, Development and Performance Characterization of an Electric Ground Vehicle with Independently Actuated in</span><span>&ndash;</span><span>Wheel Motors, Journal of Power Sources, Vol. 196, No. 8, pp. .2011 ,3971</span><span>&ndash;</span><span>3962 </span></p> </li> <li> <p><span>Shuai, H. Zhang, J. Wang, J. Li, and M. Ouyang, Combined AFS and DYC Control of Four</span><span>&ndash;</span><span>Wheel</span><span>&ndash;</span><span>Independent</span><span>&ndash; </span><span>Drive Electric Vehicles over CAN Network with Time</span><span>&ndash;</span><span>Varying Delays, IEEE Transactions on Vehicular Technol- ogy, Vol. 63, No. 2, pp. 591</span><span>&ndash; </span><span>602, 2014. </span></p> </li> <li> <p><span>Ji, X. He, C. Lv, Y. Liu, and Jian Wu. A Vehicle Stability Control Strategy with Adaptive Neural Network Sliding Mode Theory Based on System Uncertainty Approximation, Vehicle System Dynamics, Vol. 56, No. 6, pp. 923</span><span>&ndash; </span><span>.2018 ,946 </span></p> </li> <li> <p><span>Panathula CB, Rosales A, Shtessel YB, Fridman LM. Closing Gaps for Aircraft Attitude Higher Order Sliding Mode Control Certification via Practical Stability Margins Identification. IEEE Transactions on Control Systems Technology, Vol. 26, No. 6, pp. 2020</span><span>&ndash;</span><span>34, 2018. </span></p> </li> <li> <p><span>M.V. Basin, P. Yu, Y.B. Shtessel, Hypersonic Missile Adaptive Sliding Mode Control Using Finite</span><span>&ndash; </span><span>and Fixed</span><span>&ndash; </span><span>Time Observers, IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, pp. 930</span><span>&ndash;</span><span>941, 2018. </span></p> </li> <li> <p><span>Acosta</span><span>&ndash;</span><span>L ́ua, B. Castillo</span><span>&ndash;</span><span>Toledo, and S. Di Gennaro, and A. Toro, Nonlinear Robust Regulation of Ground Vehicle Motion, Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, pp. 3871</span><span>&ndash;</span><span>3876, 2017. </span></p> </li> <li> <p><span>Acosta</span><span>&ndash;</span><span>L ́ua, B. Castillo</span><span>&ndash;</span><span>Toledo, and S. Di Gennaro, Nonlinear Output Robust Regulation of Ground Vehicles in Presence of Disturbances and Parameter Uncertainties, Proceedings of the 17th IFAC World Congress, Seoul, Ko- rea, July 6</span><span>&ndash;</span><span>11, pp. 141</span><span>&ndash;</span><span>146, 2018. </span></p> </li> <li> <p><span>Acosta L ́ua, B. Castillo-Toledo, R. Cespi, S. Di Gennaro, An Integrated Active Nonlinear Controller for Wheeled Vehicles, Journal of the Franklin Institute, vol. 352, no. 11, pp. 4890</span><span>&ndash;</span><span>4910, 2015. </span></p> </li> <li> <p><span>Bianchi, A. Borri, G. Burgio, M. D. Di Benedetto, and S. Di Gennaro, Adaptive Integrated Vehicle Control using Active Front Steering and Rear Torque Vectoring, International Journal of Vehicle Autonomous Systems, Special Issue on: </span><span>&ldquo;Autonomous and Semi&ndash;Autonomous Control for Safe Driving of Ground Vehicles&rdquo;, Vol. 8, No. 2/3/4, </span><span>pp. 85</span><span>&ndash;</span><span>105, 2010. </span></p> </li> <li> <p><span>Bianchi, A. Borri, B. Castillo</span><span>&ndash;</span><span>Toledo, M.D. Di Benedetto, and S. Di Gennaro, Active Control of Vehicle Attitude with Roll Dynamics, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 7174</span><span>&ndash;</span><span>7179, 2011.</span></p> </li> <li> <p>Borri, D. Bianchi, M. D. Di Benedetto, and S. Di Gennaro, Optimal Workload Actuator Balancing and Dynamic Reference Generation in Active Vehicle Control, Journal of the Franklin Institute, Vol. 354, pp. 1722&ndash;1740, 2017.</p> </li> <li> <p>Wang RR, Zhang H, Wang J. Linear parameter-varying controller design for four wheel independently-actuated electric ground vehicles with active steering systems. IEEE Trans Contr Syst Technol 2014</p> </li> <li> <p>Martinez&ndash;Gardea, I.J. Mares Guzm ́an, Cuauht ́emoc Acosta L ́ua, S. Di Gennaro, and Ivan V ́azquez Alvarez, Design of a Nonlinear ́ Observer for a Laboratory Antilock Braking System, Control Engineering and Applied In- formatics, Vol. 17, No. 3, pp. 105&ndash;112, 2015.</p> </li> <li> <p>Fu, R. Hoseinnezhad, K. Li, M. Hu, F. Huang, and F. Li, Vehicle Integrated Chassis Control via Multi&ndash;Input Multi&ndash; Output Sliding Mode Control, 2018 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 355&ndash;360, 2018.</p> </li> <li> <p>Canale, M., Fagiano, L., Milanese, M., &amp; Borodani, P. Robust vehicle yaw control using an active differential and IMC techniques. Control Engineering Practice, 2017.</p> </li> <li> <p>Zhao, H., Gao, B., Ren, B., and Chen, H. &rdquo;Integrated control of in-wheel motor electric vehicles using a triple step nonlinear method.&rdquo; Journal of the Franklin Institute 352.2, 2015.</p> </li> <li> <p>Wang, R., Chen, Y., Feng, D., Huang, X., and Wang, J.&rdquo;Development and performance characterization of an elec- tric ground vehicle with independently actuated in-wheel motors.&rdquo; Journal of Power Sources 196.8, 2011.</p> </li> <li> <p>Ming, W. Deng, and Y. Wang, Integrated Chassis Control with Optimal Tire Force Distribution for Electric Vehi- cles, 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2504&ndash;2509, 2015.</p> </li> <li> <p>Van M. An Enhanced Tracking Control of Marine Surface Vessels Based on Adaptive Integral Sliding Mode Con- trol and Disturbance Observer. ISA Transactions, In Press, 2019.</p> </li> <li> <p>Gao Y., Liu J, Sun G, Liu M, Wu L. Fault Deviation Estimation and Integral Sliding Mode Control Design for Lip- schitz Nonlinear Systems. Systems &amp; Control Letters, Vol. 123, pp. 8&ndash;15, 2019.</p> </li> <li> <p>Pan Y, Yang C, Pan L, Yu H. Integral Sliding Mode Control: Performance, Modification, and Improvement. IEEE Transactions on Industrial Informatics, Vol. 14, No. 7, pp. 3087&ndash;96, 2018.</p> </li> </ol></div> </div> </div>