مدلسازی دینامیکی و مطالعه پارامتری یک ربات ارتعاشی با حرکت صفحه ای
پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8)
کد مقاله : 1132-ISAV2022 (R1)
نویسندگان
گروه طراحی کاربردی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران
چکیده
در این مقاله، مدلسازی دینامیکی و مطالعه پارامتری یک ربات ارتعاشی با حرکت صفحه ای مورد بررسی قرار می گیرد. ربات مورد نظر از یک بدنه صلب اصلی و دو جرم داخلی و محرک تشکیل شده است که حرکت محرک ها در دو جهت عمود بر هم می باشد و منجر به حرکت صفحه ای مورد انتظار می شود. به این ترتیب که با تغییر دامنه ارتعاشی و فرکانس تحریک جرم های محرک، مانورهای حرکتی مختلفی برای ربات به وجود می آید. در ابتدا معادلات دینامیکی حاکم بر حرکت ربات با در نظر گرفتن اصطکاک خشک کولمب برای پدیده چسبیدن - لغزش و با استفاده از روش لاگرانژ استخراج می شود. سپس حل عددی انجام شده با حل نرم افزار سیم اسکیپ مقایسه و صحت سنجی شده و در ادامه اثر پارامترهای مختلف نظیر دامنه، فرکانس و اختلاف فاز بین دو محرک بر سرعت متوسط طولی، جانبی و دورانی ربات بررسی می شود. در انتها به بحث و نتیجه گیری پرداخته می شود.
کلیدواژه ها
موضوعات
Title
Dynamic modelling and parametric study of a vibration-driven robot with planar motion
Authors
Seyed Mehdi Mousavi, Vahid Fakhari
Abstract
In this paper, dynamic modeling and parametric study of a vibration-driven robot with planar motion are investigated. The considered robot consists of a main rigid body and two moving masses which move in two directions perpendicular to each other to make a planar motion. By changing the vibration amplitude and excitation frequency of the moving masses, different motion maneuvers are created for the vibration robot. At first, the dynamic equations governing the motion of the vibration robot are derived by considering the dry Coulomb friction for the stick-slip phenomenon and using the Lagrange method. Then, the employed numerical solution of the equations is compared and validated by the Simscape results. Then, the effect of various parameters such as amplitude, frequency, and phase difference between two moving masses on the average longitudinal, lateral and rotational velocity of the vibration robot is investigated. In the end, a discussion and conclusions are presented.
Keywords
Vibration-driven robot, Planar motion, parametric study, Dynamic modeling
مراجع
<p dir="ltr">1. F. Chernous’ko, "Analysis and optimization of the motion of a body controlled by means of a movable internal mass," Journal of Applied Mathematics and Mechanics, vol. 70, no. 6, pp. 819-842, 2006.</p>
<p dir="ltr">2. F. Chernous’ko, "The optimal periodic motions of a two-mass system in a resistant medium," Journal of Applied Mathematics and Mechanics, vol. 72, no. 2, pp. 116-125, 2008.</p>
<p dir="ltr">3. F. Chernousko, "On the optimal motion of a body with an internal mass in a resistive medium," Journal of Vibration and Control, vol. 14, no. 1-2, pp. 197-208, 2008.</p>
<p dir="ltr">4. H. Fang and J. Xu, "Dynamic analysis and optimization of a three-phase control mode of a mobile system with an internal mass," Journal of Vibration and Control, vol. 17, no. 1, pp. 19- 26, 2011.</p>
<p dir="ltr">5. H.-b. Fang and J. Xu, "Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium," Journal of sound and vibration, vol. 330, no. 16, pp. 4002-4018, 2011.</p>
<p dir="ltr">6. Z. Du, H. Fang, X. Zhan, and J. Xu, "Experiments on vibration-driven stick-slip locomotion: a sliding bifurcation perspective," Mechanical Systems and Signal Processing, vol. 105, pp. 261- 275, 2018.</p>
<p dir="ltr">7. L. Wu, K. Lu, and Y. Xia, "Investigation of Current Control for a New Bi-directional Linear Capsule Robot," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019: IEEE, pp. 3707-3711.</p>
<p dir="ltr">8. V.-D. Nguyen and N.-T. La, "An improvement of vibration-driven locomotion module for capsule robots," Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.</p>
<p dir="ltr">9. N.-T. La, T.-T. Nguyen, and V.-D. Nguyen, "A comparative study on the two vibration driven locomotion systems in various friction levels," Vietnam Journal of Mechanics, vol. 43, no. 2, pp. 121-137, 2021.</p>
<p dir="ltr">10. K.-T. Nguyen, N.-T. La, K.-T. Ho, Q.-H. Ngo, N.-H. Chu, and V.-D. Nguyen, "The effect of friction on the vibro-impact locomotion system: modeling and dynamic response," Meccanica, vol. 56, no. 8, pp. 2121-2137, 2021.</p>
<p dir="ltr">11. N. Bolotnik, I. Zeidis, K. Zimmermann, and S. Yatsun, "Dynamics of controlled motion of vibration-driven systems," Journal of Computer and Systems Sciences International, vol. 45, no. 5, pp. 831-840, 2006.</p>
<p dir="ltr">12. N. Sobolev and K. Sorokin, "Experimental investigation of a model of a vibration-driven robot with rotating masses," Journal of Computer and Systems Sciences International, vol. 46, no. 5, pp. 826-835, 2007.</p>
<p dir="ltr">13. K. Sorokin, "Motion of a mechanism along a rough inclined plane using the motion of internal oscillating masses," Journal of Computer and Systems Sciences International, vol. 48, no. 6, pp. 993-1001, 2009.</p>
<p dir="ltr">14. Y. Liu, J. Páez Chávez, B. Guo, and R. Birler, "Bifurcation analysis of a vibro-impact experimental rig with two-sided constraint," Meccanica, vol. 55, no. 12, pp. 2505-2521, 2020.</p>
<p dir="ltr">15. K. Sapronov, A. Cherepanov, and S. Yatsun, "Investigation of motion of a mobile two-mass vibration-driven system," Journal of Computer and Systems Sciences International, vol. 49, no. 1, pp. 144-151, 2010.</p>
<p dir="ltr">16. X. Zhan and J. Xu, "Locomotion analysis of a vibration-driven system with three accelerationcontrolled internal masses," Advances in Mechanical Engineering, vol. 7, no. 3, p. 1687814015573766, 2015.</p>
<p dir="ltr">17. X. Zhan, J. Xu, and H. Fang, "Planar locomotion of a vibration-driven system with two internal masses," Applied Mathematical Modelling, vol. 40, no. 2, pp. 871-885, 2016.</p>
<p dir="ltr">18. X. Zhan, J. Xu, and H. Fang, "A vibration-driven planar locomotion robot—Shell," Robotica, vol. 36, no. 9, pp. 1402-1420, 2018</p>