تحلیل گذرای تیر کامپوزیتی تحت اثر حرکت وسیله نقلیه

پذیرفته شده برای ارائه شفاهی ، صفحه 1-12 (12)
کد مقاله : 1055-ISAV2022 (R3)
نویسندگان
1دانشکده مهندسی مکانیک/دانشگاه نوشیروانی بابل/بابل/مازندران/ایران
2مازندران، بابل، خیابان شریعتی، دانشگاه صنعتی نوشیروانی بابل، دانشکده مهندسی مکانیک، گروه طراحی کاربردی
چکیده
در مقاله حاضر به تجزیه و تحلیل رفتار دینامیکی پل تحت اثر حرکت وسیله نقلیه متحرک با استفاده از تئوری تغییر شکل برشی مرتبه اول یا تئوری تیموشنکو پرداخته می شود. پل و وسیله نقلیه به ترتیب به صورت تیر کامپوزیتی چندلایه و نیم خودرو در نظر گرفته شده اند. معادلات حاکم تیر و وسیله نقلیه با استفاده از روش المان محدود استخراج گشته‌اند. در روش المان محدود نیز از المان تیر مرتبه بالای سه گرهی بهره گرفته شد. حل معادلات وابسته به زمان با استفاده از روش نیومارک خطی انجام گرفته است. تعداد درجات آزادی وسیله نقلیه نیز دو درجه آزادی میباشد. به منظور استخراج نتایج از کوپلینگ های خمش-کشش, خمش-پیچش و پیچش-کشش, همراه با اثرات تغییر شکل برشی, اینرسی چرخشی و اثر پوآسون نیز استفاده شده است. نتایج ارتعاش آزاد و اجباری سیستم پل و وسیله نقلیه، همخوانی قابل قبولی با نتایج دیگر مقالات و نرم افزار تجاری کامسول دارند.
کلیدواژه ها
موضوعات
 
Title
Transient analysis of composite beam under the action of the vehicle
Authors
fatemeh Darzi, Mohammad Hadi Pashaei, Ramazan-Ali Jafari-Talookolaei
Abstract
In this article, the dynamic behavior of the bridge under the effect of the moving vehicle is analyzed using the theory of first-order shear deformation or Timoshenko's theory. The bridge and the vehicle are considered as a multi-layer composite beam and a half-car, respectively. The governing equations of the beam and the vehicle have been derived using the finite element method. In the finite element method, the three-node high-order beam element was also used. Solving the time-dependent equations has been done using the linear Newmark method. The number of degrees of freedom of the vehicle is also two degrees of freedom. In order to extract the results, the couplings of bending-tension, bending-torsion and torsion-tension, together with the effects of shear deformation, rotational inertia and Poisson's effect have been used. The results of the free and forced vibration of the bridge and vehicle system are in acceptable agreement with the results of other articles and the commercial software of COMSOL.
Keywords
Transient analysis, Composite, Timoshenko', s theory, moving load
مراجع
<p dir="ltr">1. R.A. Jafari-Talookolaei, M. Abedi, M. Attar, "In-plane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups", Aerospace Science and Technology 66, 366&ndash;379 (2017).</p> <p dir="ltr">2. M.H. Kargarnovin, R.A. Jafari-Talookolaei, M.T. Ahmadian, "Vibration analysis of delaminated Timoshenko beams under the motion of a constant amplitude point force traveling with uniform velocity", International Journal of Mechanical Sciences 70, 39&ndash;49 (2013)</p> <p dir="ltr">3. SP. Timoshenko, "On the forced vibration of bars of uniform cross section", Philos Mag 43, 125&ndash;36 (1922).</p> <p dir="ltr">4. L. Fryba, Vibration of solids and structures under moving loads, Groningen, Netherland, 1972.</p> <p dir="ltr">5. J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2004.</p> <p dir="ltr">6. C.P. Sudheesh Kumar, C. Sujathan, K. Shankar, "Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon", International Journal of Mechanical Sciences 99, 40&ndash;47 (2015).</p> <p dir="ltr">7. B. Dyniewicz, C.I. Bajer, K.L. Kuttler, M. Shillor, "Vibrations of a Gao beam subjected to a moving mass", Nonlinear Analysis: Real World Applications 50, 342&ndash;364 (2019).</p> <p dir="ltr">8. B. Zhen, J. Xu, J. Sun, "Analytical solutions for steady state responses of an infinite Euler-Bernoulli beam on a nonlinear viscoelastic foundation subjected to a harmonic moving load", Journal of Sound and Vibration 476, 115271 (2020).</p> <p dir="ltr">9. I. Esen, "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", International Journal of Mechanical Sciences 175, 105501 (2020).</p> <p dir="ltr">10. I. Esen, "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", International Journal of Mechanical Sciences 153-154, 21-35 (2019).</p> <p dir="ltr">11. I.M. Abu-Alshaikh, "A New Technique for Investigating the Dynamic Response of a Beam Subjected to a LoadMoaving System", Journal of Applied Research on Industrial Engineering 4, 268&ndash;278 (2017).</p> <p dir="ltr">12. Y.H. Lin, M.W. Trethewey, "Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads", Journal of Sound and Vibration 136, 323-342 (1990).</p> <p dir="ltr">13. M. Karimi, A.H. Karimi, R. Tikani, S. Ziaei-Rad, "Experimental and theoretical investigations on piezoelectricbased energy harvesting from bridge vibrations under travelling vehicles", International Journal of Mechanical Sciences 119, 1-11 (2016).</p> <p dir="ltr">14. S.R. Mohebpour, A.R. Fiouz, A.A. Ahmadzadeh, "Dynamic analysis of laminated composite plates subjected to a moving oscillator by FEM", Composite Structures 93, 1574-1583 (2011).</p> <p dir="ltr">15. C. Rodrigues, F.M.F. Sim&otilde;es, A. Pinto da Costa, D. Froio, E. Rizzi, "Finite element dynamic analysis of beams on nonlinear elastic foundations under a moving oscillator", European Journal of Mechanics/A Solids 68, 9-24 (2018).</p> <p dir="ltr">16. S.H. Ju, H.T. Lin, C.C. Hsueh, S.L. Wang, "A simple finite element model for vibration analyses induced by moving vehicles", International Journal for Numerical Methods in Engineering 68, 1232&ndash;1256 (2006).</p> <p dir="ltr">17. P.J. Magari, L.A. Shultz, V.R. Murthy, "Dynamics of helicopter rotor blades", Computers &amp; structures, 29, 763-776 (1988).</p> <p dir="ltr">18. W. Kim, J. Chung, "Free non-linear vibration of a rotating thin ring with the in-plane and out-of-plane motions. Journal of Sound and Vibration", 258, 167-178 (2002).</p> <p dir="ltr">19. T.D. Hien, N.D. Hung, N.T. Kien, H.C. Noh, "The variability of dynamic responses of beams resting on elastic foundation subjected to vehicle with random system parameters", Applied Mathematical Modelling 67, 676-687 (2019)</p>