تاثیر پارامترهای فعال و غیرفعال بر ناپایداری و دوشاخگی رفتار آکوستیکی و اپتیکی یک شبکه کریستالی پیچیده

پذیرفته شده برای ارائه شفاهی ، صفحه 1-8 (8) XML اصل مقاله (2.3 MB)
کد مقاله : 1108-ISAV2022 (R1)
نویسندگان
1گروه آموزشی فیزیک، آموزش و پرورش فارس، شیراز، ایران
2شیراز دانشکده مهندسی مکانیک دانشگاه شیراز پژوهشکده علوم و فنون هوا-دریاz
چکیده
هدف اصلی این مقاله بررسی رفتار غیر خطی و پدیده دو شاخگی تغییر فرم میکرو یک شبکه کریستالی پیچیده بمنظور امکان طراحی کنترلرهای دقیق تر برای این سیستمها است. ابتدا معادلات حاکمه یک شبکه کریستالی پیچیده که شامل دستگاه معادلات دیفرانسیل پاره ای غیرخطی کوپل بین مودهای ماکرو (اکوستیکی) و میکرو (اپتیکی) میباشد استخراج شده و پس از اعتبار سنجی کد عددی نوشته شده، رفتارهای غیرخطی و دوشاخگی تغییر فرم میکرو بررسی شد. از آنجا که معادلات و پاسخها (تغییرفرمهای ماکرو و میکرو) در حوزه زمان – مکان بیان شده اند، برای مطالعه رفتار صفحه فاز و همچنین دوشاخگی مود میکرو، 5 شاخص بر اساس متوسط گیری یا یافتن بیشینه مقادیر در هر دیفرانسیل مکانی تعریف شد و نتایج بر اساس آنها بیان شد. همچنین مقادیر بحرانی برای دو پارامتر ماکرو بار به عنوان یک پارامتر فعال و قبض مکانیکی به عنوان یک پارامتر غیرفعال که سبب ناپایداری پاسخ میشوند محاسبه شد.
کلیدواژه ها
 
Title
The Effect of Active and Passive Parameters on the instability and Bifurcation of Acoustic and Optic Modes of a complex Crystalline Lattice
Authors
Zahra Mirzaeian, Alireza Asnafi
Abstract
The main purpose of this article is to investigate the nonlinear behavior and bifurcation phenomenon of the micro-deformation of a complex crystalline lattice in order to design more accurate controllers for these systems. First, the governing equations of a complex crystalline lattice, which includes the coupled nonlinear partial differential equations of the macro (acoustic) and micro (optical) modes, were extracted. After that the numerical code was validated and then the nonlinear behaviors and bifurcation of the micro- deformation were investigated. Since the equations and responses (macro and micro deformations) are expressed in the time-space domain, to study the behavior in the phase plane as well as the bifurcation of the micro-deformation, five indices were defined based on averaging or finding the maximum values in each spatial step. Also, the critical values of two parameters, their variations cause instability, were calculated. The former is the macro-load as an active parameter and the latter is the mechano-striction as a passive parameter that cause instability and bifurcation of the response.
Keywords
Crystalline Lattice, bifurcation, Acoustic instability, Optical instability
مراجع
<p>1. Pecharsky, V.K. and Zavalij, Fundamentals of Crystalline State and Crystal Lattice, in Fundamentals of Powder Diffraction and Structural Characterization of Materials. 2009, Springer US: Boston, MA. p. 1-15. 2. Zhang, S., et al., Eigenvalue solution for the ion-collisional effects on the fast and slow ion acoustic waves in multi-ion species plasmas. Plasma Physics and Controlled Fusion, 2021. 63(4): p. 045014. 3. El-Tantawy, S., et al., Homotopy perturbation and Adomian decomposition methods for modeling the nonplanar structures in a bi-ion ionospheric superthermal plasma. The European Physical Journal Plus, 2021. 136(5): p. 1-16. 4. Erofeev, V.I. and I.S. Pavlov, Structural modeling of metamaterials. 2021: Springer. 5. Andrianov, I.V., V. Danishevskyy, and J. Awrejcewicz, Linear and nonlinear waves in microstructured solids: homogenization and asymptotic approaches. 2021: CRC Press. 6. Aero, E., Micromechanics of a double continuum in a model of a medium with variable periodic structure. Journal of engineering mathematics, 2006. 55(1): p. 81-95. 7. Di Domenico, G., et al., On the stability of optical lattices. arXiv preprint physics/0412072, 2004. 8. Aero, E., Microscale deformations in a two-dimensional lattice: Structural transitions and bifurcations at critical shear. Physics of the Solid State, 2000. 42(6): p. 1147-1153. 9. Aero, E., Inhomogeneous microscopic shear strains in a complex crystal lattice subjected to large macroscopic strains (exact solutions). Physics of the Solid State, 2003. 45(8): p. 1557-1565. 10. Bulygin, A.N. and Y.V. Pavlov, Solution of Dynamic Equations of Plane Deformation for Nonlinear Model of Complex Crystal Lattice, in Mechanics and Control of Solids and Structures. 2022, Springer. p. 115-136. 11. Aero, E.L., A.N. Bulygin, and Y.V. Pavlov. Mathematical methods for solution of nonlinear model of deformation of crystal media with complex lattice. in 2015 Days on Diffraction (DD). 2015. IEEE. 12. Bulygin, E.A.A. and Y.V.P.N. Reinberg, Nonlinear theory of deformation of crystal media with complex structure of lattice: plane deformation. 13. Fradkov, A., B. Andrievsky, and E.L. Aero, CONTROLLED EXCITATION OF THE OPTICAL MODE IN A COUPLED CHAIN. 2011. 14. Aero, E., et al., Dynamics and nonlinear control of oscillations in a complex crystalline lattice. IFAC Proceedings Volumes, 2005. 38(1): p. 830-835. 15. Aero, E., et al., Dynamics and control of oscillations in a complex crystalline lattice. Physics Letters A, 2006. 353(1): p. 24-29. 16. Fradkov, A., Cybernetical physics: from control of chaos to quantum control. 2007: Springer. 17. Dolgopolik, M., A.L. Fradkov, and B. Andrievsky, Boundary energy control of a system governed by the nonlinear Klein&ndash;Gordon equation. Mathematics of Control, Signals, and Systems, 2018. 30(1): p. 1-21. 18. Xu, L. and Z. Qian, Topology optimization and de-homogenization of graded lattice structures based on asymptotic homogenization. Composite Structures, 2021. 277: p. 114633. 19. Pavlova, E.L.A.A.N.B.a.Y.V., Nonlinear Model of Deformation of Crystalline Media Allowing for Martensitic Transformations: Plane Deformation. Mechanics of Solids, 2019. 54: p. 303-313.</p>