
 

  1 

 

 

 
 
 

The application of audio signals in gear fault diagnosis 
based on deep learning methods: an end-to-end ap-

proach 

 

Hassan Alavia,b, Abdolreza Ohadia,b 

 

a Acoustics Research Laboratory, Mechanical Engineering Department, Amirkabir Univer-

sity of Technology (Tehran Polytechnic), Tehran, Iran 

b Vehicle Technology Research Center, Technology Institute of Mechanical Engineering, 

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran 

* Corresponding author e-mail: a_r_ohadi@aut.ac.ir 

 

Abstract 

Diagnosing gearbox faults based on audio signal has received less attention in researches, alt-

hough due to the non-contact nature of the microphone, it makes the diagnosis process more 

accessible. In this article, based on the methods of deep learning, the diagnosis of crack and 

uniform wear of the gearbox in three different scenarios of (1) constant fault severity and work-

ing conditions, (2) constant fault severity and different working conditions, (3) different fault 

severity and different working conditions have been investigated. State-of-the-art methods of 

Convolutional Neural Network (CNN), Deep Residual Neural Network (DRN) and a proposed 

hybrid network of CNN and Long Short-Term Memory (LSTM), all applied based on end-to-

end approach, have been investigated. The results show that the CNN+LSTM has a better per-

formance than other methods, in such a way that in the most difficult case, i.e. different fault 

severity and different working conditions, it classifies the faults with an accuracy of 88.8%. In 

addition, the computational cost of training the proposed network is less than other networks. 

Keywords: Fault Diagnosis; Gearbox; Deep learning; End-to-end approach.  

1. Introduction 

Gearbox is a commonly used component in many industrial, transportation, and energy conver-

sion applications. Gear faults may develop during operation due to excessive or improper use. They 

can be divided into two categories: distributed faults such as tooth wear and localized faults such as 

tooth root crack. By implementing a reliable diagnosis system, faults can be identified and repair 

measures can be carried out to prevent high economic costs due to the complete shut-down of the 
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machine without prior planning. Fault signatures could be extracted from different sources; among 

them, vibration signals, acoustic emission, audio, temperature, and oil debris are widely discussed.  

Although the audio signal is not as reliable as the vibration signal for fault detection, the use of 

the audio signal makes the diagnosis process more accessible due to the fact that there is no need for 

the sensor (microphone) to be in direct contact to the machine. Baydar and Ball conducted a compar-

ative study on the ability of vibration and audio signals in diagnosis of localized wear, crack and 

broken tooth in a gear transmission system[1]. They concluded that the audio signal is more capable 

in diagnosis of crack but less capable in diagnosis of wear and broken tooth. Hou et al proposed the 

application of near-field acoustic holography in diagnosis of gear pitting and chipping faults[2]. Van-

raj et al proposed the application of Teager-Kaiser energy operator to extract features from audio 

signal. A kNN classifier has been used to classify different chipping fault severities in gears[3]. Parey 

and Singh proposed the application of continuous wavelet transform and energy to Shannon entropy 

as features to diagnose crack and chipping in gears. An adaptive neuro-fuzzy inference system clas-

sifies the faults. 

In recent years, with the advancement of machine learning theories, and parallel to it, the de-

velopment of computing ability of computers, deep learning methods have received attention. Deep 

learning techniques can take the raw or slightly processed signals as input and perform feature ex-

traction and selection as part of the learning process. This approach called “end-to-end” approach in 

fault diagnosis and is in contrast to traditional methods that require expert’s knowledge to extract 

features from the signal. The deep learning, as a state-of-the-art topic, has been widely concerned 

since Hinton et al. proposed a fast learning algorithm to train deep belief networks[4]. Thereafter, 

other deep learning methods were developed and applied in fault diagnosis of machinery. Among 

them, Convolutional Neural Networks (CNN)[5-8], Deep Residual Neural Networks (DRNN)[9, 10], 

and Long Short-Term Memory (LSTM)[11, 12] have a history of use in the fault diagnosis.  

In this article, an end-to-end hybrid CNN and LSTM network has been proposed and its ability 

to classify wear and crack faults in a helical gearbox has been investigated under different scenarios. 

Furthermore, the accuracy of CNN+LSTM has been compared to conventional CNN and DRNN. The 

rest of this article is organized as follows. In section 2, the theoretical background on CNN, DRNN, 

and LSTM has been introduced and detailed architectures of networks has been depicted. In section 

3, the experimental test rig, faults and raw signal preparation has been described. In section 4, the 

results has been presented and discussed. Finally, in section 5, some concluding remarks have been 

drawn and ideas for future studies has been proposed. 

2. Theoretical background 

In this section, the theory of conventional CNN and two of its extensions, namely, DRNN and 

CNN+LSTM has been briefly introduced.  

2.1 Convolutional neural networks 

A conventional CNN cold be implemented by using a large variety of layers. In the following, 

the most important and widely used layers has been described. 

 

(1) Convolution layer 

The convolution layer convolves a filter or kernel its input matrix. According to the dimension 

of the input. Depending on the dimensionality of the input, the kernel could be a vector or higher 

dimensional matrix. In the processing of raw audio signals, the kernel is one-dimensional and has a 

series of weights and a bias as learnable parameters. Eq. Error! Reference source not found. shows 

how the convolution layer works: 
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𝑢𝑖
𝑙 = 𝑓 ( ∑ 𝑘𝑖

𝑙𝑥𝑖+𝑚
𝑙−1 + 𝑏

𝑀

𝑚=1

) (1) 

in which 𝑥𝑙−1 and 𝑥𝑙 denote, respectively, the input and output vector of the convolution layer, 

𝑓(. ) is the activation function, ′ ∗′ represents the convolution operator, 𝑘𝑙 is the kernel’s weight vec-

tor, and 𝑏 is a scalar bias. Finally, 𝑀 is the filter (kernel) size.  

 

(2) Activation layer 

The most common activation function used in CNNs is Rectified Linear Unit (RELU) function: 

𝜎(𝑢𝑖
𝑙) = 𝑅𝐸𝐿𝑈(𝑢𝑖

𝑙) = 𝑚𝑎𝑥(0, 𝑢𝑖
𝑙) (2) 

 

(3) Batch normalization layer 

The application of batch normalization layer is optional, however, it can enhance the rate of 

convergence of the network via normalizing the mini batch samples in such a way that the 

mean and standard deviation of its input become close to, respectively, zero and one. 

 

(4) Pooling layer  

After each activation layer, usually, a pooling layer reduces the dimensionality by down-sam-

pling. Having pooling layers in the network architecture has two advantages; first, it decreases the 

likelihood of overfitting in the network via reduction of the overall learnable parameters. Second, it 

speeds up the network convergence. Among the methods of performing the pooling operation, the 

Max-Pooling method is the most commonly used in CNN studies. The max-pooling operation can be 

described as: 

𝑥𝑖
𝑙 = 𝑚𝑎𝑥(𝑥𝑖:𝑖+𝑄

𝑙−1 ) (3) 

where 𝑥𝑙−1 and 𝑥𝑙 are, respectively, the input and output vector of the Max-pooling layer, and 

𝑄 is the pool size. The pooling layer has no learnable parameters.  

  

(5) Fully-connected layer 

A fully connected layer, similar to that used in the multi-layer perceptrons, is used to estimate 

the probabilities that an input belongs to classes. To transform probabilities to exact decisions, Soft-

max layer assigns the class label to the most probable class. The loss function of the network, when 

more than two class labels are exist, is usually defined as the cross-entropy between predicted and 

expected labels: 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑗𝑙𝑛𝑝𝑗

𝑁

𝑖=1

 (1) 

where 𝑦𝑗 is expected output, 𝑝𝑗 is predicted output, and 𝑁 is the number of samples. 

2.2 Deep residual neural networks 

Deep residual neural network is an extension to CNN. There is a problem in the training process 

of a conventional CNN that the gradients of loss function caused by last layers does not penetrate to 

first layers in backpropagation algorithm. This phenomenon usually called the “vanishing gradi-

ents”[13] and results in difficulties in the deep network training. The presence of a shortcut mapping 

as shown in Figure 1 could ease the penetration of gradients in backward direction. Ref. [14] gives a 

clear mathematical description of the residual connections on the performance of deep residual net-

works. Its worth mentioning that usually the shortcut mapping has been regarded as unity (H(x) = 1), 

however, it is possible to replace it with other types of layers such as convolution. 
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2.3 Long short-term memory networks 

Another advancement in the field of machine learning is to develop the concept of Recurrent 

Neural Networks (RNN) that mimics a discrete-time dynamical system by using feedback connec-

tions between neurons. A disadvantage of the RNNs is that they suffer from vanishing or suddenly 

increasing gradients. The concept of LSTM has been developed to overcome this disadvantage by 

inducing a constant error flow throughout the network[15]. An LSTM unit has three state variables 

that help the network to reduce the long term dependency to input sequences. These states are called 

the “forget”, the “input”, and the “output”. The forget state variable eliminates redundancy in se-

quences. The input state variable processes the incoming sequences, and the output state variable 

evaluate the dynamic connection between input and current state of the unit. The diagram of an LSTM 

unit is shown in Figure 2. 

 
Direct Mapping

F(x)

Shortcut Mapping
H(x)

Input
x

+
+

Output
F(x) + H(x)

 

Figure 1 Shortcut connection in residual neural networks 

σ σ tanh σ 

x

+x

x

ct-1

ht-1

tanh

ct

htConcatenate

xt

z
-1

z
-1

 

Figure 2 A long short-term memory unit 

 

In the current article, a hybrid CNN+LSTM network has been employed to treat raw audio 

signals because LSTM layer can enhance features extracted by CNN layers according to the above-

mentioned descriptions. To make a combination of LSTM and CNN, sequence folding/unfolding lay-

ers is necessary for the sake of compatibility between predefined objects in MATLAB™ environ-

ment. Additionally, since the pooling layer is not applicable after LSTM layer to prevent overfitting 

of the network, a dropout layer has been considered to alleviate overfitting. Detailed block diagrams 

of the three networks used in this paper has been depicted in Figure 3. The network architectures has 

been employed to classify wear and crack faults on experimental data sets. 

3. Experimental test set-up 

In this part, the experimental test rig, induced faults, and data acquisition procedure has been 

discussed. After that, the preparation of data for feeding to the deep classifiers has been introduced. 

3.1 Test rig and faults 

Figure 4 shows the experimental test rig and the location of microphone and optical tachometer. 

The central part of the experimental test rig is a Peugeot/Citroen™ BE3 gearbox. The gearbox is 



The 12th International Conference on Acoustics & Vibration (ISAV2022),  

Amirkabir University of Technology (Tehran Polytechnic), Iran, December 2022 

 

 

5 

driven by an induction motor via three parallel V-belts and sheaves. A laser tachometer made by 

Contrinex™ is located in the vicinity of the gearbox’s input shaft, and produces a pulse in each rota-

tion of the gearbox’s input shaft. A BWSA Tech™ MA231 microphone measures the sounds pro-

duced by the gearbox during operation. An Advantech™ PCI-1712-12bit with sampling frequency 

of 40KHz digitizes the microphone and the tachometer data. 

Figure 5 shows the wear fault at different severities of 5, 10 and 20 micrometre. Furthermore, 

crack fault at severities of 20%, 50%, and 80% of the tooth root depth has been illustrated in this 

figure. The tests has been conducted under two torques of 35N.m  and 45N.m, and three motor speeds 

of 30Hz, 35Hz and 40Hz. The audio and tachometer signals has been measured and recorded for 10 

seconds and each tests repeated three times. 
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Figure 3 Three deep network architectures of the current study 
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(a) 

 
(b) 

Figure 4 (a) Experimental test rig and its components (b) close-up view of sensors 

 

  

Figure 5 Gear wear and crack faults at different severities 

3.2 Raw signal preparation 

The recorded signals should be sectioned into equal parts to be fed to the deep learning classi-

fier. In rotating machinery fault diagnosis, each rotation of shaft can be regarded as a complete rep-

resentation of the condition of the machine in time domain. Therefore, tachometer pulses has been 

utilized to divide the acquired audio signal into training/validation samples. For this aim, the 

tachorpm command of MATLAB™ has been used to analyse the tachometer signal and calculate 

proper sectioning times. Figure 6 shows the result of  tachorpm on a sample of tachometer signal. 

The red “+” signs in the figure depicts the detected pulses. The audio signal between two consecutive 

detected pulses can be regarded as a sample. To have equal length samples, the audio signal between 

to pulses of tachometer resampled to a signal with a length of 500 using interp1 command of 

MATLAB™. The reason behind the resampling is two-fold; first, the signals has been acquired in 

different speed conditions, and second, even in measured signals at equal motor speeds, the presence 

of belt and pulley mechanism in transmission of the motor power to the gearbox cause unavoidable 

slip, and therefore, the length of signals between two adjacent pulses are slightly differ. 

 

Figure 6 Tachometer signal and detected pulses used for audio signal sectioning 
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4. Results and discussion 

In this section, the performance of the deep learning network architectures presented in section 

2 has been evaluated under three different scenarios. First, the fault classification ability of the clas-

sifiers under constant fault severity and working conditions has been evaluated. Second, the classifi-

cation accuracy under constant fault severity and different working conditions has been assessed, and 

third, the classification accuracy under different fault severity as well as working conditions has been 

studied. 

4.1 Scenario one: Constant fault severity and working condition 

The scenario of constant fault severity and working condition can be divided into three sub-

scenarios i.e. the mild, the moderate and the severe cases. In this scenario, the classifier should learn 

to assign three labels to each observation which has been defined in Table 1. In these three cases, the 

data acquired under the torque of 45N.m and the speed of 40Hz has been used to train the networks. 

A randomly selected 20% portion of data has been chosen for validation of the network and the re-

maining 80% has been used for training. The training diagrams of CNN, DRNN, and CNN+LSTM 

has been shown in Figure 7. For the sake of conciseness, only the training diagrams of mild case has 

been shown in the figure. It can be seen that the training of DRNN is more challenging since both the 

training and validation curves fluctuates more than CNN and CNN+LSTM. Furthermore, the DRNN 

converges more slowly to the trained situation than other two networks. 

Table 1 Fault labels in scenarios one and two 

Mild  Moderate Severe 

Label Condition  Label Condition Label Condition 

H Healthy  H Healthy H Healthy 

C Crack 20%  C Crack 50% C Crack 80% 

W Wear 5µm  W Wear 10µm W Wear 20µm 

 

  

 

Figure 7 Training chart of CNN,DRNN, and CNN+LSTM networks 

The confusion matrices of all sub-scenarios in this sections has been illustrated in Figure 8 and 

the final validation accuracy and training time of the networks on the three sub-scenarios has been 

reported in Table 2. It should be noted that the training times evaluated on a system with Intel™ Core 

i7 equipped with 8GB of RAM and running MATLAB™ 2021b under Windows™ 10 64Bit. It can 
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be seen that the training time of the CNN+LSTM is slightly lower than CNN, but the training time of 

the DRNN is dramatically higher than both CNN and CNN+LSTM. The accuracy of CNN+LSTM is 

slightly higher in mild faults, while the accuracy of CNN at moderate and severe faults is incremen-

tally higher than CNN+LSTM. The accuracy of DRNN is not as good as both CNN and CNN+LSTM. 

It can be seen from the confusion matrices that more confusions occur between crack and healthy 

conditions rather than wear and healthy conditions in all fault severities. It means that the diagnosis 

of crack is more difficult than the diagnosis of wear. 

   

   

   

Figure 8 Confusion matrices of CNN, DRNN and CNN+DRNN under mild, moderate and severe faults 

Table 2 The validation accuracy of CNN, DRNN and CNN+DRNN under mild, moderate and severe faults 

Mild  Moderate Severe  

Network Accuracy  Network Accuracy Network Accuracy 

Average 

Training Time 

(sec) 

CNN 93.8%  CNN 98.2% CNN 99.4% 100 

DRNN 92.5%  DRNN 96.0% DRNN 97.8% 482 

CNN+LSTM 94.8%  CNN+LSTM 97.9% CNN+LSTM 98.8% 77 
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4.2 Scenario two: Constant fault severity at different working condition 

In this case, the fault labels are similar to Table 1, but the data acquired under all load and 

torque conditions has been fed to the networks. Since, according to section 4.1, the mild case is more 

challenging case in fault diagnosis, only the mild case has been considered in this scenario. Again, 

20% of total data has been used for validation and 80% has been used for training. The confusion 

matrices for mild case under different load and torque conditions has been shown in Figure 9. A 

comparison between accuracy of all networks in mild case under constant and different load/speed 

has been reported in Table 3. It can be seen that the classification accuracy of CNN+LSTM surpasses 

the other classifiers as well as it has less drop in accuracy due to different working conditions rather 

than the other two networks. The confusion matrices depicts that even in different working conditions 

and mild fault severity, the confusion between wear and crack is minimal and almost all confusions 

occur between healthy and faulty conditions. 

 

   

Figure 9 Confusion matrices of CNN, DRNN and CNN+DRNN under mild faults and different working 

conditions 

 

Table 3 Validation accuracy of CNN, DRNN and CNN+DRNN under mild faults and different working con-

ditions 

Network 
Accuracy  

(Mild/Constant load/speed) 
 

Accuracy 

(Mild/different load/speed) 

Percent 

drop 

CNN 93.8%  91.8% 2.1% 

DRNN 92.5%  89.3% 3.5% 

CNN+LSTM 94.8%  93.0% 1.9% 

 

4.3 Scenario 3: Different fault severity at different working conditions 

This scenario is the hardest scenario for a classifier. The aim is to discriminate between different 

type of faults as well as different severities of each fault under different working conditions. In this 

scenario, the classifier should select a label among a set of seven labels for each observations. The 

condition labels has been defined in Table 4. 

 

Table 4 Fault labels in the third scenario 

Label Condition  Label Condition 

H Healthy  W5 Wear 10µm 

C20 Crack 20%  W10 Wear 10µm 

C50 Crack 50%  W20 Wear 20µm 

C80 Crack 80%    
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The confusion matrices of the three networks has been portrayed in Figure 10. The final vali-

dation accuracy of the networks has been reported in Table 5. It can be seen that in this scenario, the 

accuracy of all networks is significantly less than those of constant fault severity in scenario 2. Still, 

the CNN+LSTM has better classification accuracy than CNN, and CNN outperforms DRNN. By 

investigating the confusion matrices, it can be seen that all networks provide their best performance 

in detection of severe wear and their weakest performance in detection of mild crack. Furthermore, 

their overall performance in detection of wear at different severities is superior than their overall 

performance in detection of different severities of crack. It’s worth mentioning that despite the overall 

superiority of CNN+LSTM in classification accuracy, the misclassification rate of CNN and DRNN 

in detection of mild crack is less than that of CNN+LSTM. 

  

 

Figure 10 Confusion matrices of CNN, DRNN and CNN+DRNN under third scenario 
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Table 5 Validation accuracy of CNN, DRNN and CNN+DRNN under third scenario 

Network Accuracy  

CNN 87.3% 

DRNN 85.2% 

CNN+LSTM 88.8% 

5. Conclusion 

In this article, end-to-end approach on diagnosis of wear and crack faults in an automotive 

gearbox has been considered. In the end-to-end approach, there is no need to experts’ knowledge to 

define and extract features from the signal. Instead, a deep classifier performs both feature extraction 

and classification of the faults.  

An architecture for deep classifier based on a combination of CNN and LSTM has been pro-

posed and investigated under three fault scenarios: 

(1) Constant fault severity/constant working condition 

(2) Constant fault severity/different working condition 

(3) Different fault severity/different working condition 

Additionally, a conventional CNN and a DRNN has been used for comparison purposes. The 

results show that the overall performance of CNN+LSTM regarding all scenarios is better than the 

other two classifiers. In the first scenario, with mild fault severity as a more challenging case, the 

classification accuracy of CNN+LSTM is 94.8% while the accuracy of CNN and DRNN are 93.8% 

and 92.5%, respectively. In the second scenario, the accuracy drop of CNN+LSTM is 1.9%, which is 

better than that of  2.1% and 3.5% of CNN and DRNN. In the third scenario, the CNN+LSTM out-

performs the other two methods by showing an accuracy of 88.8% while the accuracy of CNN and 

DRNN are 87.3% and 85.2% respectively. 

By examining the confusion matrices of  the third scenario, it can be seen that the accuracy of 

mild crack detection in CNN+LSTM is worse than CNN and DRNN while in other fault labels it 

performs better than CNN and DRNN. It suggests an idea for future works to fuse the decisions of 

different network architectures to attain higher classification accuracy. Another idea for future works 

is to fuse different sources of data such as vibration and audio signal or acoustic emission and audio 

signal. 
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